Abstract
We introduce a novel technique that allows for an automatic quantification of MR DTI parameters along arbitrarily oriented fiber bundles. Most previous methods require either a manual placement of ROIs, are limited to single fiber tracts, or are limited to bundles which are perpendicular to one of the three image planes. Thus, the quantification process is made much more time-efficient and robust by our new approach. We compare our technique with a manual quantification of an expert and show the similarity of the results. Furthermore, we demonstrate how to visualize the parameters at a certain position of the fiber bundle so that areas of interest can easily be examined.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yamada K, Kizu O, Mori S, et al. Brain fiber tracking with clinically feasible diffusion-tensor MR imaging: initial experience. Radiology 2003;227(1):295–301.
Mori S, Crain BJ, Chacko VP, et al. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999;45(2):265–269.
Tievsky AL, Ptak T, Farkas J. Investigation of apparent diffusion coefficient and diffusion tensor anisotropy in acute and chronic multiple sclerosis lesions. Am J Neuroradiol 1999;20(8):1491–1499.
Stahl R, Dietrich O, Teipel S, et al. Assessment of axonal degeneration on alzheimer’s disease with diffusion tensor MRI. Radiologe 2003;43(7):566–575.
Tropine A, Vucurevic G, Delani P, et al. Contribution of diffusion tensor imaging to delineation of gliomas and glioblastomas. J Magn Reson Imaging 2004;20(6):905–912.
Jones DK, Travis AR, Eden G, et al. PASTA: Pointwise assessment of streamline tractography attributes. Magn Reson Med 2005;53:1462–1467.
Schlüter M, Stieltjes B, Hahn HK, et al. Detection of tumour infiltration in axonal fibre bundles using diffusion tensor imaging. Int J Medical Robotics and Computer Assisted Surgery 2005;1:80–86.
Niethammer M, Bouix S, Westin CF, et al. Fiber bundle estimation and parametrization. In: Procs MICCAI’06; 2006. 252–259.
Aoki S, Iwata NK, Masutani Y, et al. Quantitative evaluation of the pyramidal tract segmented by diffusion tensor tractography: feasibility study in patients with amyotrophic lateral sclerosis. Radiation Medicine 2005;23(3):195–199.
Fillard P, Gilmore J, Lin W, et al. Quantitative analysis of white matter fiber properties along geodesic paths. In: Procs MICCAI’03; 2003. 16–23.
Schlüter M, Konrad O, Hahn HK, et al. White matter lesion phantom for diffusion tensor data and its application to the assessment of fiber tracking. Procs SPIE 2005;5746:835–844.
Enders F, Sauber N, Merhof D, et al. Visualization of white matter tracts with wrapped streamlines. In: Provs IEEE Visualization; 2005. 51–58.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Klein, J., Hermann, S., Konrad, O., Hahn, H.K., Peitgen, HO. (2007). Automatic Quantification of DTI Parameters Along Fiber Bundles. In: Horsch, A., Deserno, T.M., Handels, H., Meinzer, HP., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2007. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71091-2_55
Download citation
DOI: https://doi.org/10.1007/978-3-540-71091-2_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71090-5
Online ISBN: 978-3-540-71091-2
eBook Packages: Computer Science and Engineering (German Language)