Abstract
We show the impacts of various signal preprocessing techniques — dimensionality reduction and transformations — for high-resolution NMR spectra on the classification accuracy of different breast cancer tissue. Our results show that some preprocessing algorithms that are widely used nowadays will not reduce the data dimensionality in an information-preserving way: the classification accuracy drops. Besides showing the most successful preprocessing steps, we can report excellent results on a challenging classification problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Vanhamme L, Sundin T, van Hecke P, van Huffel S. MR spectroscopic quantitation: A review of time-domain methods. NMR Biomed 2001;14:233–246.
Mierisová S, Ala-Korpela M. MR spectroscopy quantitation: a review of frequency domain methods. NMR Biomed 2001;14:247–259.
Hagberg G. From magnetic resonance spectroscopy to classification of tumors: A review of pattern recognition methods. NMR Biomed 1998;11:148–156.
Menze BH, Lichy MP, Bachert P, Kelm BM, Schlemmer HP, Hamprecht FA. Optimal classification of long echo time in vivo magnetic resonance spectra in the detection of recurrent brain tumors. NMR Biomed 2006;19:599–609.
Derr T. Medizinisch-diagnostische Anwendung neuronaler Netzwerke zur Analyse NMR-spektroskopischer Daten von Körperflüssigkeiten. Ph.D. thesis. Universität Bremen; 1997.
Baumgartner R, Ho TK, Somorjai R, Himmelreich U, Sorrell T. Complexity of magnetic resonance spectrum classification. Data Complexity in Pattern Recognition 2005.
Beckonert O, Monnerjahn J, Bonk U, Leibfritz D. Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps. NMR Biomed 2003;16:1–11.
Tomasi G, van den Berg F, Andersson C. Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. J Chemometrics 2004;18:231–241.
Wenzel MT, Merkel B, Althaus M, Peitgen HO. PCNSA for NMR spectroscopy breast tissue classification. In: ISMRM DP Spect WS; 2006.
Nikulin AE, Dolenko B, Bezabeh T, Somorjai RL. Near-optimal region selection for feature space reduction: Novel preprocessing methods for classifying MR spectra. NMR in Biomedicine 1998;11:209–216.
Witten IH, Frank E. Data Mining: Practical Machine Learning Tools and Techniques. 2nd ed. San Francisco: Morgan Kaufmann; 2005.
Breiman L. Random Forests. Machine Learning 2001;45:5–32.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wenzel, M.T., Merkel, B., Althaus, M., Peitgen, HO. (2007). Pattern Recognition and Classification in High-Resolution Magnetic Resonance Spectra. In: Horsch, A., Deserno, T.M., Handels, H., Meinzer, HP., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2007. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71091-2_58
Download citation
DOI: https://doi.org/10.1007/978-3-540-71091-2_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71090-5
Online ISBN: 978-3-540-71091-2
eBook Packages: Computer Science and Engineering (German Language)