Skip to main content

Pattern Recognition and Classification in High-Resolution Magnetic Resonance Spectra

  • Conference paper
Bildverarbeitung für die Medizin 2007

Part of the book series: Informatik aktuell ((INFORMAT))

  • 922 Accesses

Abstract

We show the impacts of various signal preprocessing techniques — dimensionality reduction and transformations — for high-resolution NMR spectra on the classification accuracy of different breast cancer tissue. Our results show that some preprocessing algorithms that are widely used nowadays will not reduce the data dimensionality in an information-preserving way: the classification accuracy drops. Besides showing the most successful preprocessing steps, we can report excellent results on a challenging classification problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vanhamme L, Sundin T, van Hecke P, van Huffel S. MR spectroscopic quantitation: A review of time-domain methods. NMR Biomed 2001;14:233–246.

    Article  Google Scholar 

  2. Mierisová S, Ala-Korpela M. MR spectroscopy quantitation: a review of frequency domain methods. NMR Biomed 2001;14:247–259.

    Article  Google Scholar 

  3. Hagberg G. From magnetic resonance spectroscopy to classification of tumors: A review of pattern recognition methods. NMR Biomed 1998;11:148–156.

    Article  Google Scholar 

  4. Menze BH, Lichy MP, Bachert P, Kelm BM, Schlemmer HP, Hamprecht FA. Optimal classification of long echo time in vivo magnetic resonance spectra in the detection of recurrent brain tumors. NMR Biomed 2006;19:599–609.

    Article  Google Scholar 

  5. Derr T. Medizinisch-diagnostische Anwendung neuronaler Netzwerke zur Analyse NMR-spektroskopischer Daten von Körperflüssigkeiten. Ph.D. thesis. Universität Bremen; 1997.

    Google Scholar 

  6. Baumgartner R, Ho TK, Somorjai R, Himmelreich U, Sorrell T. Complexity of magnetic resonance spectrum classification. Data Complexity in Pattern Recognition 2005.

    Google Scholar 

  7. Beckonert O, Monnerjahn J, Bonk U, Leibfritz D. Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps. NMR Biomed 2003;16:1–11.

    Article  Google Scholar 

  8. Tomasi G, van den Berg F, Andersson C. Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. J Chemometrics 2004;18:231–241.

    Article  Google Scholar 

  9. Wenzel MT, Merkel B, Althaus M, Peitgen HO. PCNSA for NMR spectroscopy breast tissue classification. In: ISMRM DP Spect WS; 2006.

    Google Scholar 

  10. Nikulin AE, Dolenko B, Bezabeh T, Somorjai RL. Near-optimal region selection for feature space reduction: Novel preprocessing methods for classifying MR spectra. NMR in Biomedicine 1998;11:209–216.

    Article  Google Scholar 

  11. Witten IH, Frank E. Data Mining: Practical Machine Learning Tools and Techniques. 2nd ed. San Francisco: Morgan Kaufmann; 2005.

    MATH  Google Scholar 

  12. Breiman L. Random Forests. Machine Learning 2001;45:5–32.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wenzel, M.T., Merkel, B., Althaus, M., Peitgen, HO. (2007). Pattern Recognition and Classification in High-Resolution Magnetic Resonance Spectra. In: Horsch, A., Deserno, T.M., Handels, H., Meinzer, HP., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2007. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71091-2_58

Download citation

Publish with us

Policies and ethics