Skip to main content

Point-Based Statistical Shape Models with Probabilistic Correspondences and Affine EM-ICP

  • Conference paper
Bildverarbeitung für die Medizin 2007

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

A fundamental problem when computing statistical shape models (SSMs) is the determination of correspondences between the instances. Often, homologies between points that represent the surfaces are assumed which might lead to imprecise mean shape and variation results. We present a novel algorithm based on the affine Expectation Maximization - Iterative Closest Point (EM-ICP) registration method. Exact correspondences are replaced by iteratively evolving correspondence probabilities which provide the basis for the computation of mean shape and variability model. We validated our approach by computing SSMs using inexact correspondences for kidney and putamen data. In ongoing work, we want to use our methods for automatic classification applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lorenz C, Krahnstoever N. Generation of point-based 3D statistical shape models for anatomical objects. Computer Vision and Image Understanding 2000;77(2):175–191.

    Article  Google Scholar 

  2. Raynaud N. Segmentation d’Images Hépatiques par Analyses Statistiques. Master’s thesis. DEA Mathématiques, Vision, Apprentissage — ENS Cachan; 2000.

    Google Scholar 

  3. Bookstein FL. Landmark methods for forms without landmarks: Morphometrics in group differences in outline shapes. Medical Image Analysis 1996;1:225–243.

    Article  Google Scholar 

  4. Shelton CR. Morphable surface models. International Journal of Computer Vision 2000;38(1):75–91.

    Article  MATH  Google Scholar 

  5. Besl PJ, McKay ND. A method for registration of 3D shapes. IEEE Trans Pat Anal and Mach Intel 1992; 239–256.

    Google Scholar 

  6. Davies RH, Twining CJ, Cootes TF. A minimum description length approach to statistical shape modeling. IEEE Transactions on Medical Imaging 2002;21(5).

    Google Scholar 

  7. Heimann T, Wolf I, Williams T, Meinzer HP. 3D active shape models using gradient descent optimization of description length. In: IPMI. vol. 3565; 2005. 566–577.

    Google Scholar 

  8. Zhao Z, Theo EK. A novel framework for automated 3D PDM construction using deformable models. Procs SPIE 2005;5747:303–314.

    Article  Google Scholar 

  9. Rangarajan A, Chui H, Bookstein FL. The softassign procrustes matching algorithm. In: IPMI; 1997. 29–42.

    Google Scholar 

  10. Granger S, Pennec X. Multi-scale EM-ICP: A fast and robust approach for surface registration. LNCS 2002;2353:418–432.

    Google Scholar 

  11. Schroeder WJ, Zarge JA, Lorensen WE. Decimation of triangle meshes. Computer Graphics 1992;26(2):65–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hufnagel, H., Pennec, X., Ehrhardt, J., Handels, H., Ayache, N. (2007). Point-Based Statistical Shape Models with Probabilistic Correspondences and Affine EM-ICP. In: Horsch, A., Deserno, T.M., Handels, H., Meinzer, HP., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2007. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71091-2_87

Download citation

Publish with us

Policies and ethics