Abstract
This research study presents rough set-based decision systems applications to the acoustical domain. Two areas are reviewed for this purpose, namely music information classification and retrieval and noise control. The main aim of this paper is to show results of both measurements of the acoustic climate and a survey on noise threat, conducted in schools and students’ music clubs. The measurements of the acoustic climate employ multimedia noise monitoring system engineered at the Multimedia Systems Department of the Gdansk University of Technology. Physiological effects of noise exposure are measured using pure tone audiometry and otoacoustic emission tests. All data are gathered in decision tables in order to explore the significance of attributes related to hearing loss occurence and subjective factors that attribute to the noise annoyance. Future direction of experiments are shortly outlined in Summary.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Borg, E., Engstrom, B.: Noise level, inner hair cell damage, audiometric features and equal-energy hypothesis. J Acoust. Soc. Am. 86(5), 1776–1782 (1989)
Budzynska, L., et al.: Supporting Experts in Ranking Generic Audio and Visual Objects. In: Proc. IEEE Workshop Signal Processing’2004, Poznan, pp. 81–86. IEEE Computer Society Press, Los Alamitos (2004)
Budzynska, L., et al.: Multistimulus ranking versus pairwise comparison in assessing quality of musical instruments sounds. 118 AES Convention Paper, 6482, Barcelona (2005)
Criteria for a recommended standard, Occupational Noise Exposure. U.S. Department of Health and Human Services (1998)
http://www.cdc.gov/niosh/98-126.html (Criteria for a recommended standard)
Czyzewski, A., Kostek, B., Skarzynski, H.: Intelligent System for Environmental Noise Monitoring. In: Dunin-Keplicz, B., et al. (eds.) Monitoring, Security, and Rescue Techniques in Multiagent Systems. Advances in Soft Computing, pp. 397–410. Springer, Heidelberg (2005)
Czyzewski, A., Kostek, B., Skarzynski, H.: IT applications for the remote testing of communication senses. In: Information Technology Solutions for Health Care, Springer, Heidelberg (2006)
Czyzewski, A., Szczerba, M., Kostek, B.: Musical Phrase Representation and Recognition by Means of Neural Networks and Rough Sets. In: Peters, J.F., et al. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 254–278. Springer, Heidelberg (2004)
Czyzewski, A., Kostek, B.: Musical Metadata Retrieval with Flow Graphs. In: Tsumoto, S., et al. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 691–698. Springer, Heidelberg (2004)
Czyzewski, A., Kotus, J., Kostek, B.: Comparing Noise Levels and Audiometric Testing Results Employing IT Based Diagnostic Systems. In: The 33rd International Congress and Exposition on Noise Control Engineering, INTERNOISE’2004, Prague, August 22-24, pp. 22–24 (2004)
Dunn, D.E., et al.: Hearing loss in the chinchilla from impact and continuous noise exposure. J. Acoust. Soc. Am. 90(4), 1979–1985 (1991)
Dziubinski, M., Dalka, P., Kostek, B.: Estimation of Musical Sound Separation Algorithm Effectiveness Employing Neural Networks. J. Intelligent Information Systems, Special Issue on Intelligent Multimedia Applications 24(2), 133–157 (2005)
Dziubinski, M., Kostek, B.: Octave Error Immune and Instantaneous Pitch Detection Algorithm. J. of New Music Research 34, 273–292 (2005)
Engel, Z.W., Sadowski, J., et al.: Noise protection in Poland in European Legislation (in Polish). The Committee on Acoustics of the Polish Academy of Science & CIOP-PIB, Warsaw (2005)
Henderson, D., Hamernik, R.P.: Impulse noise: Critical review. J. Acoust. Soc. Am. 80(2), 569–584 (1986)
Hippe, M.P.: Towards the Classification of Musical Works: A Rough Set Approach. In: Alpigini, J.J., et al. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 546–553. Springer, Heidelberg (2002)
Jelonek, J., et al.: Inferring Decision Rules from Jurys’ Ranking of Competing Violins. In: Proc. Stockholm Music Acoustic Conference, KTH, Stockholm, pp. 75–78 (2003)
Jelonek, J., et al.: Inducing jury’s preferences in terms of acoustic features of violin sounds. In: Rutkowski, L., et al. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 492–497. Springer, Heidelberg (2004)
Johnston, J.D.: Transform Coding of Audio Signals Using Perceptual Noise Criteria. IEEE Journal on Selected Areas in Communications 6(2), 314–323 (1988)
Komorowski, J., et al.: Rough Sets: A Tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98. Springer, Heidelberg (1998)
Kostek, B.: Soft Computing in Acoustics, Applications of Neural Networks, Fuzzy Logic and Rough Sets to Musical Acoustics. Physica Verlag, Heidelberg (1999)
Kostek, B.: Perception-Based Data Processing in Acoustics. Applications to Music Information Retrieval and Psychophysiology of Hearing. Studies in Computational Intelligence, vol. 3. Springer, Heidelberg (2005)
Kostek, B.: Musical Instrument Classification and Duet Analysis Employing Music Information Retrieval Techniques. Proc. of the IEEE 92(4), 712–729 (2004)
Kostek, B.: Intelligent Multimedia Applications - Scanning the Issue. J. Intelligent Information Systems, Special Issue on Intelligent Multimedia Applications 24(2), 95–97 (Guest Editor) (2005)
Kostek, B., Wojcik, J.: Machine Learning System for Estimating the Rhythmic Salience of Sounds. International J. of Knowledge-based and Intelligent Engineering Systems 9, 1–10 (2005)
Kostek, B., Czyzewski, A.: Processing of Musical Metadata Employing Pawlak’s Flow Graphs. In: Peters, J.F., et al. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 279–298. Springer, Heidelberg (2004)
Kotus, J., Kostek, B.: Investigation of Noise Threats and Their Impact on Hearing in Selected Schools. OSA’2006, Archives of Acoustics (in print, 2006)
Kotus, J.: Evaluation of Noise Threats and Their Impact on Hearing by Employing Teleinformatic Systems (Kostek, B., supervisor) (in preparation, 2007)
Lukasik, E.: AMATI-Multimedia Database of Violin Sounds. In: Proc. Stockholm Music Acoustics Conference, KTH Stockholm, pp. 79–82 (2003a)
Lukasik, E.: Timbre Dissimilarity of Violins: Specific Case of Musical Instruments Identification. In: Digital Media Processing for Multimedia Interactive Services, pp. 324–327. World Scientific, Singapore (2003b)
Lukasik, E., Susmaga, R.: Unsupervised Machine Learning Methods in Timbral Violin Characteristics Visualization. In: Proc. Stockholm Music Acoustics Conference, KTH Stockholm, pp. 83–86 (2003)
Melnick, W.: Human temporary threshold shift (TTS) and damage risk. J. Acoust. Soc. Am. 90(1), 147–154 (1991)
Pal, S.K., Polkowski, L., Skowron, A.: Rough-Neural Computing. Techniques for Computing with Words. Springer, Heidelberg (2004)
Pawlak, Z.: Rough Sets. International J. Computer and Information Sciences (1982)
Pawlak, Z.: Probability, Truth and Flow Graph. Electronic Notes in Theoretical Computer Science 82(4) (2003)
Pawlak, Z.: Elementary Rough Set Granules: Towards a Rough Set Processor. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing. Techniques for Computing with Words, pp. 5–13. Springer, Heidelberg (2004)
Pawlak, Z.: A Treatise on Rough Sets. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV. LNCS, vol. 3700, pp. 1–17. Springer, Heidelberg (2005)
Polish Standard PN-N-01307, Permissible sound level values in work-places and general requirements concerning taking measurements (in Polish) (1994)
Seixas, N., et al.: Alternative Metrics for Noise Exposure Among Construction Workers. Ann. Occup. Hyg. 49, 493–502 (2005)
Wieczorkowska, A., et al.: Creating Reliable Database for Experiments on Extracting Emotions from Music. In: Klopotek, M.A., Wierzchon, S., Trojanowski, K. (eds.) Intelligent Information Processing and Web Mining, Proceedings of the International IIS: IIPWM’05 Conference, Gdansk, Poland. Advances in Soft Computing, pp. 395–402. Springer, Heidelberg (2005)
Wieczorkowska, A., et al.: Extracting Emotions from Music Data. In: Hacid, M.-S., et al. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 456–465. Springer, Heidelberg (2005)
Wieczorkowska, A., Ras, Z.W.: Do We Need Automatic Indexing of Musical Instruments? In: Proceedings of Warsaw IMTCI, International Workshop on Intelligent Media Technology for Communicative Intelligence, Warsaw, Poland, September 13–14, pp. 43–38. PJIIT - Publishing House (2004)
Wieczorkowska, A.: Towards Extracting Emotions from Music. In: Proceedings of Warsaw IMTCI, International Workshop on Intelligent Media Technology for Communicative Intelligence, Warsaw, Poland, September 13–14, pp. 181–183. PJIIT - Publishing House (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this chapter
Cite this chapter
Kostek, B. (2007). The Domain of Acoustics Seen from the Rough Sets Perspective. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J., Orłowska, E., Polkowski, L. (eds) Transactions on Rough Sets VI. Lecture Notes in Computer Science, vol 4374. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71200-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-71200-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71198-8
Online ISBN: 978-3-540-71200-8
eBook Packages: Computer ScienceComputer Science (R0)