Skip to main content

Analyzing Parameter Sensitivity and Classifier Representations for Real-Valued XCS

  • Conference paper
Learning Classifier Systems (IWLCS 2003, IWLCS 2004, IWLCS 2005)

Abstract

To evaluate a real-valued XCS classifier system, we present a validation of Wilson’s XCSR from two points of view. These are: (1) sensitivity of real-valued XCS specific parameters on performance and (2) the design of classifier representation with classifier operators such as mutation and covering. We also propose model with another classifier representation (LU-Model) to compare it with a model with the original XCSR classifier representation (CS-Model.) We did comprehensive experiments by applying a 6-dimensional real-valued multiplexor problem to both models. This revealed the following: (1) there are critical threshold on covering operation parameter (r 0), which must be considered in setting parameters to avoid serious decreases in performance; and (2) the LU-Model has an advantage in smaller classifier population size within the same performance level over the CS-Model, which reveals the superiority of alternative classifier representation for real-valued XCS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Butz, M.V., Wilson, S.W.: An algorithmic description of XCS. Soft Computing 6, 144–153 (2002)

    MATH  Google Scholar 

  2. Holland, J.H.: Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems. In: Machine learning, an artificial intelligence approach, vol. II (1986)

    Google Scholar 

  3. Kovacs, T.: XCS classifier system reliably evolves accurate, complete, and minimal representations for boolean functions. In: Soft Computing in Engineering Design and Manufacturing, pp. 59–68 (1997)

    Google Scholar 

  4. Stone, C., Bull, L.: For Real! XCS with Continuous-Valued Inputs. Evolutionary Computation 11(3), 298–336 (2003)

    Article  Google Scholar 

  5. Sutton, R.S., Barto, A.G.: Reinforcement Learning: an Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  6. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3(2), 149–175 (1995)

    Article  Google Scholar 

  7. Wilson, S.W.: Generalization in the XCS classifier system. In: Genetic Programming 1998: Proc. of the Third Annual Conference, pp. 665–674 (1998)

    Google Scholar 

  8. Wilson, S.W.: Get real! XCS with continuous-valued inputs. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, Springer, Heidelberg (2000)

    Google Scholar 

  9. Wilson, S.W.: Mining oblique data with XCS. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tim Kovacs Xavier Llorà Keiki Takadama Pier Luca Lanzi Wolfgang Stolzmann Stewart W. Wilson

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Wada, A., Takadama, K., Shimohara, K., Katai, O. (2007). Analyzing Parameter Sensitivity and Classifier Representations for Real-Valued XCS. In: Kovacs, T., Llorà, X., Takadama, K., Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds) Learning Classifier Systems. IWLCS IWLCS IWLCS 2003 2004 2005. Lecture Notes in Computer Science(), vol 4399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71231-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71231-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71230-5

  • Online ISBN: 978-3-540-71231-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics