Abstract
Evolutionary hardware design reveals the potential to provide autonomous systems with self-adaptation properties. We first outline an architectural concept for an intrinsically evolvable embedded system that adapts to slow changes in the environment by simulated evolution, and to rapid changes in available resources by switching to preevolved alternative circuits. In the main part of the paper, we treat evolutionary circuit design as a multi-objective optimization problem and compare two multi-objective optimizers with a reference genetic algorithm. In our experiments, the best results were achieved with TSPEA2, an optimizer that prefers a single objective while trying to maintain diversity.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
de Garis, H.: Evolvable Hardware – Genetic Programming of a Darwin Machine. In: Proceedings International Conference on Artificial Neural Networks and Genetic Algorithms (ICANNGA), Springer, Heidelberg (1993)
Higuchi, T., Niwa, T., Tanaka, T., Iba, H., de Garis, H., Furuya, T.: Evolving Hardware with Genetic Learning: A First Step Towards Building a Darwin Machine. In: Proceedings 2nd International Conference on Simulation of Adaptive Behavior (SAB), pp. 417–424. MIT Press, Cambridge (1993)
Thompson, A., Layzell, P.: Analysis of Unconventional Evolved Electronics. Communications of the ACM 42 (1999) 71–79 ACM Press.
Higuchi, T., Kajihara, N.: Evolvable Hardware Chips for Industrial Applications. Communications of the ACM 42(4), 60–66 (1999)
Damiani, E., Liberali, V., Tettamanzi, A.: Evolutionary Design of Hashing Function Circuits Using an FPGA. In: International Conference on Evolvable Systems (ICES), pp. 36–46. Springer, Heidelberg (1998)
Keymeulen, D., Konaka, K., Iwata, M., Kuniyoshi, Y., Higuchi, T.: Robot Learning Using Gate-Level Evolvable Hardware. In: EWLR-6: Proceedings of the 6th European Workshop on Learning Robots, London, UK, p. 173. Springer, Heidelberg (1998)
Kalganova, T., Miller, J.: Evolving More Efficient Digital Circuits by Allowing Circuit Layout Evolution and Multi-Objective Fitness. In: The First NASA/DoD Workshop on Evolvable Hardware, Pasadena, California, 19-21 July 1999, pp. 54–63. IEEE Computer Society, Los Alamitos (1999)
Coello Coello, C.A.: Treating Constraints as Objectives for Single-Objective Evolutionary Optimization. In: Engineering Optimization, vol. 32, pp. 275–308. Taylor & Francis, Abington (2000)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)
Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Proceedings of the European Conference on Genetic Programming, London, UK, pp. 121–132. Springer, Heidelberg (2000)
Trefzer, M., Langeheine, J., Meier, K., Schemmel, J.: Operational Amplifiers: An Example for Multi-objective Optimization on an Analog Evolvable Hardware Platform. In: International Conference on Evolvable Systems (ICES), pp. 86–97. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Kaufmann, P., Platzner, M. (2007). Toward Self-adaptive Embedded Systems: Multi-objective Hardware Evolution. In: Lukowicz, P., Thiele, L., Tröster, G. (eds) Architecture of Computing Systems - ARCS 2007. ARCS 2007. Lecture Notes in Computer Science, vol 4415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71270-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-71270-1_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71267-1
Online ISBN: 978-3-540-71270-1
eBook Packages: Computer ScienceComputer Science (R0)