Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4395))

Abstract

Simulating and optimizing complex physical systems is known to be a task of considerable time and computational complexity. As a result, metamodeling techniques for the efficient exploration of the design space have become standard practice since they reduce the number of simulations needed. However, conventionally such metamodels are constructed sequentially in a one-shot manner, without exploiting inherent parallelism. To tackle this inefficient use of resources we present an adaptive framework where modeler and simulator interact through a distributed environment, thus decreasing model generation and simulation turnaround time. This paper provides evidence that such a distributed approach for adaptive sampling and modeling is worthwhile investigating. Research in this new field can lead to even more innovative automated modeling tools for complex simulation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, G.G., Shan, S.: Review of metamodeling techniques in support of engineering design optimization. ASME Transactions. Journal of Mechanical Design, in press (2006)

    Google Scholar 

  2. Gu, L.: A comparison of polynomial based regression models in vehicle safety analysis. In: Diaz, A. (ed.) 2001 ASME Design Engineering Technical Conferences - Design Automation Conference, ASME, Pittsburgh (2001)

    Google Scholar 

  3. Marsden, A.L., et al.: Optimal aeroacoustic shape design using the surrogate management framework: Surrogate optimization. Optimization and Engineering 5(28), 235–262 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Simpson, T.W., et al.: Approximation methods in multidisciplinary analysis and optimization: A panel discussion. Structural and Multidisciplinary Optimization 27, 302–313 (2004)

    Article  Google Scholar 

  5. Martin, J.D., Simpson, T.W.: Use of adaptive metamodeling for design optimization. In: Proc. of 9th AIAA/ISSMO symposium on multidisciplinary analysis and optimization, Atlanta, Georgia, 4-6 September (2002)

    Google Scholar 

  6. Hendrickx, W., Dhaene, T.: Multivariate modelling of complex simulation-based systems. In: Proceedings of the IEEE NDS 2005 conference, pp. 212–216. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  7. Hendrickx, W., Dhaene, T.: Sequential design and rational metamodelling. In: Kuhl, M.E., et al. (eds.) Proceedings of the 2005 Winter Simulation Conference, pp. 290–298 (2005)

    Google Scholar 

  8. Hendrickx, W., Dhaene, T.: M 3-toolbox (2005), Available on www.coms.ua.ac.be in the Software section

  9. Gorissen, D., et al.: H2O Metacomputing - Jini Lookup and Discovery. In: Sunderam, V.S., et al. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 1072–1079. Springer, Heidelberg (2005)

    Google Scholar 

  10. Hellinckx, P., et al.: User experiences with nuclear physics calculations on H2O and on the BEgrid. In: Sunderam, V.S., et al. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 1081–1088. Springer, Heidelberg (2005)

    Google Scholar 

  11. modeFRONTIER, http://www.esteco.it/products/

  12. FlightLab, http://www.flightlab.com/

  13. Abramson, D., et al.: An automatic design optimization tool and its application to computational fluid dynamics. In: Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM), pp. 25–25. IEEE Computer Society Press, Los Alamitos (2001)

    Chapter  Google Scholar 

  14. Abramson, D., Giddy, J., Kotler, L.: High performance parametric modeling with Nimrod/G: Killer application for the global grid? In: Rolim, J.D.P. (ed.) IPDPS-WS 2000. LNCS, vol. 1800, pp. 520–528. Springer, Heidelberg (2000)

    Google Scholar 

  15. Giunta, A., Eldred, M.: Implementation of a trust region model management strategy in the DAKOTA optimization toolkit. In: Proceedings of the 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA (2000)

    Google Scholar 

  16. Eres, M.H., et al.: Implementation and utilisation of a grid-enabled problem solving environment in matlab. Future Generation Comp. Syst. 21, 920–929 (2005)

    Article  Google Scholar 

  17. Ng, H.K., et al.: A multi-cluster grid enabled evolution framework for aerodynamic airfoil design optimization. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3611, pp. 1112–1121. Springer, Heidelberg (2005)

    Google Scholar 

  18. Ng, H.K., et al.: Grid enabled optimization. In: Sloot, P.M.A., et al. (eds.) EGC 2005. LNCS, vol. 3470, pp. 296–304. Springer, Heidelberg (2005)

    Google Scholar 

  19. Lehmensiek, R., Meyer, P.: Creating accurate multivariate rational interpolation models for microwave circuits by using efficient adaptive sampling to minimize the number of computational electromagnetic analyses. IEEE Trans. Microwave Theory Tech. 49, 1419 (2001)

    Article  Google Scholar 

  20. De Geest, J., et al.: Adaptive CAD-model building algorithm for general planar microwave structures. IEEE Transactions on Microwave Theory and Techniques 47, 1801–1809 (1999)

    Article  Google Scholar 

  21. Weiss, L., et al.: Bayesian computer-aided experimental design of heterogeneous scaffolds for tissue engineering. Computer Aided Design 37, 1127–1139 (2005)

    Article  Google Scholar 

  22. Parmee, I., et al.: Towards autonomous evolutionary design systems via grid-based technologies. In: Proceedings of ASCE Computing in Civil Engineering, Cancun, Mexico (2005)

    Google Scholar 

  23. Casanova, H., et al.: The AppLeS parameter sweep template: User-level middleware for the grid. In: Proceedings of Supercomputing (SC 2000) (2000)

    Google Scholar 

  24. Casanova, H., et al.: Heuristics for scheduling parameter sweep applications in grid environments. In: Proc. 9th Heterogeneous Computing Workshop (HCW), Cancun, Mexico, pp. 349–363 (2000)

    Google Scholar 

  25. Berman, F., et al.: Adaptive computing on the grid using AppLeS. IEEE Transactions on Parallel and Distributed Systems (TPDS) 14, 369–382 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michel Daydé José M. L. M. Palma Álvaro L. G. A. Coutinho Esther Pacitti João Correia Lopes

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Gorissen, D., Crombecq, K., Hendrickx, W., Dhaene, T. (2007). Adaptive Distributed Metamodeling. In: Daydé, M., Palma, J.M.L.M., Coutinho, Á.L.G.A., Pacitti, E., Lopes, J.C. (eds) High Performance Computing for Computational Science - VECPAR 2006. VECPAR 2006. Lecture Notes in Computer Science, vol 4395. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71351-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71351-7_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71350-0

  • Online ISBN: 978-3-540-71351-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics