Skip to main content

Parallel Implementation of Elastic Grid Matching Using Cellular Neural Networks

  • Conference paper
Computer Vision/Computer Graphics Collaboration Techniques (MIRAGE 2007)

Abstract

The following paper presents a method that allows for a parallel implementation of the most computationally expensive element of the deformable template paradigm, which is a grid-matching procedure. Cellular Neural Network Universal Machine has been selected as a framework for the task realization. A basic idea of deformable grid matching is to guide node location updates in a way that minimizes dissimilarity between an image and grid-recorded information, and that ensures minimum grid deformations. The proposed method provides a parallel implementation of this general concept and includes a novel approach to grid’s elasticity modeling. The method has been experimentally verified using two different analog hardware environments, yielding high execution speeds and satisfactory processing accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A.K., Zhong, Y., Lakshmanan, S.: Object Matching Using Deformable Templates. IEEE Transactions on PAMI 18(3), 267–278 (1996)

    Google Scholar 

  2. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. International Journal of Computer Vision 1(4), 321–331 (1998)

    Article  Google Scholar 

  3. Roska, T., Chua, L.O.: The CNN Universal Machine: An Analogic Array Computer. IEEE Transactions on Circuits and Systems-II 40, 163–173 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dudek, P., Carey, S.J.: General-purpose 128×128 SIMD processor array with integrated image sensor. Electronic Letters 42(12) (2006)

    Google Scholar 

  5. Symon, K.: Mechanics. Addison-Wesley, Reading (1971)

    Google Scholar 

  6. Szczypinski, P.M., Materka, A.: Object tracking and recognition using deformable grid with geometrical templates. In: Proc. of Int. Conference on Signals and Electronic Systems ICSES 2000, Poland, pp. 169–174 (2000)

    Google Scholar 

  7. Linan, G., et al.: ACE4K: An analog I/O visual microprocessor chip with 7-bit analog accuracy. International Journal of Circuit Theory and Applications 30, 89–116 (2002)

    Article  MATH  Google Scholar 

  8. Linan, G., et al.: ACE16K: an Advanced Focal-Plane Analog Programmable Processor. In: Proceedings of ESSCIRC’2001, Austria, pp. 201–204 (2001)

    Google Scholar 

  9. Zarandy, A., Rekeczky, C.: Bi-i: a Standalone Ultra High Speed Cellular Vision System. IEEE Circuits and Systems Magazine 5(2) (2005)

    Google Scholar 

  10. Image Processing Library - Reference Manual v. 3.2. AnaLogic Computers Ltd., Budapeszt (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

André Gagalowicz Wilfried Philips

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

S̀lot, K., Korbel, P., Kim, H., Lee, M., Ko, S. (2007). Parallel Implementation of Elastic Grid Matching Using Cellular Neural Networks. In: Gagalowicz, A., Philips, W. (eds) Computer Vision/Computer Graphics Collaboration Techniques. MIRAGE 2007. Lecture Notes in Computer Science, vol 4418. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71457-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71457-6_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71456-9

  • Online ISBN: 978-3-540-71457-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics