Abstract
The following paper presents a method that allows for a parallel implementation of the most computationally expensive element of the deformable template paradigm, which is a grid-matching procedure. Cellular Neural Network Universal Machine has been selected as a framework for the task realization. A basic idea of deformable grid matching is to guide node location updates in a way that minimizes dissimilarity between an image and grid-recorded information, and that ensures minimum grid deformations. The proposed method provides a parallel implementation of this general concept and includes a novel approach to grid’s elasticity modeling. The method has been experimentally verified using two different analog hardware environments, yielding high execution speeds and satisfactory processing accuracy.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jain, A.K., Zhong, Y., Lakshmanan, S.: Object Matching Using Deformable Templates. IEEE Transactions on PAMI 18(3), 267–278 (1996)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. International Journal of Computer Vision 1(4), 321–331 (1998)
Roska, T., Chua, L.O.: The CNN Universal Machine: An Analogic Array Computer. IEEE Transactions on Circuits and Systems-II 40, 163–173 (1993)
Dudek, P., Carey, S.J.: General-purpose 128×128 SIMD processor array with integrated image sensor. Electronic Letters 42(12) (2006)
Symon, K.: Mechanics. Addison-Wesley, Reading (1971)
Szczypinski, P.M., Materka, A.: Object tracking and recognition using deformable grid with geometrical templates. In: Proc. of Int. Conference on Signals and Electronic Systems ICSES 2000, Poland, pp. 169–174 (2000)
Linan, G., et al.: ACE4K: An analog I/O visual microprocessor chip with 7-bit analog accuracy. International Journal of Circuit Theory and Applications 30, 89–116 (2002)
Linan, G., et al.: ACE16K: an Advanced Focal-Plane Analog Programmable Processor. In: Proceedings of ESSCIRC’2001, Austria, pp. 201–204 (2001)
Zarandy, A., Rekeczky, C.: Bi-i: a Standalone Ultra High Speed Cellular Vision System. IEEE Circuits and Systems Magazine 5(2) (2005)
Image Processing Library - Reference Manual v. 3.2. AnaLogic Computers Ltd., Budapeszt (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
S̀lot, K., Korbel, P., Kim, H., Lee, M., Ko, S. (2007). Parallel Implementation of Elastic Grid Matching Using Cellular Neural Networks. In: Gagalowicz, A., Philips, W. (eds) Computer Vision/Computer Graphics Collaboration Techniques. MIRAGE 2007. Lecture Notes in Computer Science, vol 4418. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71457-6_43
Download citation
DOI: https://doi.org/10.1007/978-3-540-71457-6_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71456-9
Online ISBN: 978-3-540-71457-6
eBook Packages: Computer ScienceComputer Science (R0)