Abstract
This paper presents a method to suppress the bias artifact, also known as RF-inhomogeneity, in Magnetic Resonance Imaging (MRI). This artifact produces illumination variations due to magnetic field fluctuations of the device. In the latest years many works have been devoted to face this problem. In this work we present the 3D version of a new approach to bias correction, which is called Exponential Entropy Driven Homomorphic Unsharp Masking (E 2 D − HUM). This technique has been already presented by some of the authors for the 2D case only. The description of the whole method is detailed, and some experimental results are reported.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ardizzone, E., Pirrone, R., Gambino, O.: Exponential Entropy Driven HUM on Knee MR Images. In: Proc. of IEEE XXVII Engineering in Medicine and Biology Conference, Shanghai, China, 4–7 September, 2005, IEEE Computer Society Press, Los Alamitos (2005)
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function. Plenum Press, New York (1981)
Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. Comput. J. 7, 308–313 (1965)
Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imag. 17, 87–97 (1998)
Ashburner, J., Friston, K.: MRI sensitivity correction and tissue classification. NeuroImage 7, S706 (1998)
De Deene, Y.: Fundamentals of MRI measurements for gel dosimetry. Journal of Physics: Conference Series 3, 87–114 (2004)
Johnston, B., et al.: Segmentation of Multide Sclerosis Lesions in Intensity Corrected Multispectral MRI. IEEE Transaction On Medical Imaging 15(2) (1996)
Styner, M., et al.: Parametric estimate of intensity inhomogeneities applied to MRI Medical Imaging. IEEE Transactions on Medical Imaging 22, 153–165 (2000)
Vokurka, E.A., Thacker, N.A., Jackson, A.: A fast model independent method for automatic correction of intensity nonuniformity in MRI data. J. Magn. Reson. Imag. 10, 550–562 (1999)
Guillemaud, R.: Uniformity Correction with Homomorphic filtering on Region of Interest. In: IEEE International Conference on Image Processing, vol. 2, pp. 872–875. IEEE, Los Alamitos (1998)
Dawant, B.M., Zijdenbos, A.P., Margolin, R.A.: Correction of Intensity Variations in MR Images for Computer-Aided Tissue Classification. IEEE Transactions on Medical Imaging 12, 770–781 (1993)
Axel, L., Costantini, J., Listerud, J.: Intensity Correction in Surface Coil MR Imaging. American Journal on Roentgenology 148, 418–420 (1987)
Tincher, M., et al.: Polynomial Modelling and Reduction of RF Body Coil Spatial Inhomogeneity in MRI. IEEE Transactions on Medical Imaging 12, 361–365 (1993)
Brinkmann, B.H., Manduca, A., Robb, R.A.: Optimized Homomorphic Unsharp Masking for MR Greyscale Inhomogeneity Correction. IEEE Transactions on Medical Imaging 17, 161–171 (1998)
Likar, B., Viergever, M.A., Pernus, F.: Retrospective Correction of MR Intensity Inhomogeneity by Information Minimization. IEEE Transactions on Medical Imaging 20, 1398–1410 (2001)
Kwan, R.K.S., Evans, A.C., Pike, G.B.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Transactions on Medical Imaging 18(11), 1085–1097 (1999)
Kwan, R.K.S., Evans, A.C., Pike, G.B.: An Extensible MRI Simulator for Post-Processing Evaluation. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 135–140. Springer, Heidelberg (1996)
Arnold, J.B., et al.: Quantitative and Qualitive Evaluation of Six Algorithms for Correcting Intensity Non-Uniformity Effects. Neuroimage 13(5), 931–943 (2001)
Brechbuhler, C., Gerig, G., Szekely, G.: Compensation of spatial inhomogeneity in MRI based on a multi-valued image model and a parametric bias estimate. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 141–146. Springer, Heidelberg (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Ardizzone, E., Pirrone, R., La Bua, S., Gambino, O. (2007). Volumetric Bias Correction. In: Gagalowicz, A., Philips, W. (eds) Computer Vision/Computer Graphics Collaboration Techniques. MIRAGE 2007. Lecture Notes in Computer Science, vol 4418. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71457-6_48
Download citation
DOI: https://doi.org/10.1007/978-3-540-71457-6_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71456-9
Online ISBN: 978-3-540-71457-6
eBook Packages: Computer ScienceComputer Science (R0)