Skip to main content

Abstract

This paper presents a method to suppress the bias artifact, also known as RF-inhomogeneity, in Magnetic Resonance Imaging (MRI). This artifact produces illumination variations due to magnetic field fluctuations of the device. In the latest years many works have been devoted to face this problem. In this work we present the 3D version of a new approach to bias correction, which is called Exponential Entropy Driven Homomorphic Unsharp Masking (E 2 D − HUM). This technique has been already presented by some of the authors for the 2D case only. The description of the whole method is detailed, and some experimental results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ardizzone, E., Pirrone, R., Gambino, O.: Exponential Entropy Driven HUM on Knee MR Images. In: Proc. of IEEE XXVII Engineering in Medicine and Biology Conference, Shanghai, China, 4–7 September, 2005, IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  2. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function. Plenum Press, New York (1981)

    MATH  Google Scholar 

  3. Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. Comput. J. 7, 308–313 (1965)

    Google Scholar 

  4. Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imag. 17, 87–97 (1998)

    Article  Google Scholar 

  5. Ashburner, J., Friston, K.: MRI sensitivity correction and tissue classification. NeuroImage 7, S706 (1998)

    Google Scholar 

  6. De Deene, Y.: Fundamentals of MRI measurements for gel dosimetry. Journal of Physics: Conference Series 3, 87–114 (2004)

    Article  Google Scholar 

  7. Johnston, B., et al.: Segmentation of Multide Sclerosis Lesions in Intensity Corrected Multispectral MRI. IEEE Transaction On Medical Imaging 15(2) (1996)

    Google Scholar 

  8. Styner, M., et al.: Parametric estimate of intensity inhomogeneities applied to MRI Medical Imaging. IEEE Transactions on Medical Imaging 22, 153–165 (2000)

    Article  Google Scholar 

  9. Vokurka, E.A., Thacker, N.A., Jackson, A.: A fast model independent method for automatic correction of intensity nonuniformity in MRI data. J. Magn. Reson. Imag. 10, 550–562 (1999)

    Article  Google Scholar 

  10. Guillemaud, R.: Uniformity Correction with Homomorphic filtering on Region of Interest. In: IEEE International Conference on Image Processing, vol. 2, pp. 872–875. IEEE, Los Alamitos (1998)

    Google Scholar 

  11. Dawant, B.M., Zijdenbos, A.P., Margolin, R.A.: Correction of Intensity Variations in MR Images for Computer-Aided Tissue Classification. IEEE Transactions on Medical Imaging 12, 770–781 (1993)

    Article  Google Scholar 

  12. Axel, L., Costantini, J., Listerud, J.: Intensity Correction in Surface Coil MR Imaging. American Journal on Roentgenology 148, 418–420 (1987)

    Google Scholar 

  13. Tincher, M., et al.: Polynomial Modelling and Reduction of RF Body Coil Spatial Inhomogeneity in MRI. IEEE Transactions on Medical Imaging 12, 361–365 (1993)

    Article  Google Scholar 

  14. Brinkmann, B.H., Manduca, A., Robb, R.A.: Optimized Homomorphic Unsharp Masking for MR Greyscale Inhomogeneity Correction. IEEE Transactions on Medical Imaging 17, 161–171 (1998)

    Article  Google Scholar 

  15. Likar, B., Viergever, M.A., Pernus, F.: Retrospective Correction of MR Intensity Inhomogeneity by Information Minimization. IEEE Transactions on Medical Imaging 20, 1398–1410 (2001)

    Article  Google Scholar 

  16. Kwan, R.K.S., Evans, A.C., Pike, G.B.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Transactions on Medical Imaging 18(11), 1085–1097 (1999)

    Article  Google Scholar 

  17. Kwan, R.K.S., Evans, A.C., Pike, G.B.: An Extensible MRI Simulator for Post-Processing Evaluation. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 135–140. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  18. Arnold, J.B., et al.: Quantitative and Qualitive Evaluation of Six Algorithms for Correcting Intensity Non-Uniformity Effects. Neuroimage 13(5), 931–943 (2001)

    Article  Google Scholar 

  19. Brechbuhler, C., Gerig, G., Szekely, G.: Compensation of spatial inhomogeneity in MRI based on a multi-valued image model and a parametric bias estimate. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 141–146. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

André Gagalowicz Wilfried Philips

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Ardizzone, E., Pirrone, R., La Bua, S., Gambino, O. (2007). Volumetric Bias Correction. In: Gagalowicz, A., Philips, W. (eds) Computer Vision/Computer Graphics Collaboration Techniques. MIRAGE 2007. Lecture Notes in Computer Science, vol 4418. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71457-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71457-6_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71456-9

  • Online ISBN: 978-3-540-71457-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics