Skip to main content

Learning Cycle-Linear Hybrid Automata for Excitable Cells

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4416))

Included in the following conference series:

Abstract

We show how to automatically learn the class of Hybrid Automata called Cycle-Linear Hybrid Automata (CLHA) in order to model the behavior of excitable cells. Such cells, whose main purpose is to amplify and propagate an electrical signal known as the action potential (AP), serve as the “biologic transistors” of living organisms. The learning algorithm we propose comprises the following three phases: (1) Geometric analysis of the APs in the training set is used to identify, for each AP, the modes and switching logic of the corresponding Linear Hybrid Automata. (2) For each mode, the modified Prony’s method is used to learn the coefficients of the associated linear flows. (3) The modified Prony’s method is used again to learn the functions that adjust, on a per-cycle basis, the mode dynamics and switching logic of the Linear Hybrid Automata obtained in the first two phases. Our results show that the learned CLHA is able to successfully capture AP morphology and other important excitable-cell properties, such as refractoriness and restitution, up to a prescribed approximation error. Our approach is fully implemented in MATLAB and, to the best of our knowledge, provides the most accurate approximation model for ECs to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., et al.: Hybrid modeling and simulation of biomolecular networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Alur, R., et al.: The altorithmic analysis of hybrid systems. Theoretical Computer Siences 138, 3–34 (1995)

    Article  MATH  Google Scholar 

  3. Barbano, P., et al.: A coherent framework for multi-resolution analysis of biological networks with memory: Ras pathway, cell cycle and immune system. Proc. National Academy of Science 102, 6245–6250 (2005)

    Article  Google Scholar 

  4. Belta, C., et al.: Understanding the bacterial stringent response using reachability analysis of hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 111–126. Springer, Heidelberg (2004)

    Google Scholar 

  5. Bemporad, A., et al.: A bounded-error approach to piecewise affine system identification. IEEE Transactions on Automatic Control 50(10), 1473–1634 (2005)

    Article  MathSciNet  Google Scholar 

  6. Biktashev, V.N.: A simplified model of propagation and dissipation of excitation fronts. International Journal of Bifurcation and Chaos 13, 3605–3619 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. de Jong, H., et al.: Hybrid modeling and simulation of genetic regulatory networks: A qualitative approach. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 267–282. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Erbes, T.: Stochastic learning feedback hybrid automata for dynamic power management in embedded systems (2004)

    Google Scholar 

  9. Fenton, F., Karma, A.: Vortex dynamics in 3d continous myocardium with fiber rotation: Filament instability and fibrillation. CHAOS 8, 20–47 (1998)

    Article  MATH  Google Scholar 

  10. Rigatos, G.C., Vlahavas, I.P., Spyropoulos, C.D.: Fuzzy stochastic automata for reactive learning and hybrid control. In: Vlahavas, I.P., Spyropoulos, C.D. (eds.) SETN 2002. LNCS (LNAI), vol. 2308, pp. 366–377. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Ghosh, R., Tomlin, C.J.: Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modeling: Delta-notch protein signaling. IEEE Transactions on Systems Biology 1(1), 170–183 (2004)

    Google Scholar 

  12. Henry, M.M.: Model-based estimation of probabilistic hybrid automata (2002)

    Google Scholar 

  13. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane currents and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  14. Huber, M., Grupen, R.A.: A hybrid architecture for learning robot control tasks. Robotics Today 13(4) (2000)

    Google Scholar 

  15. Joshi, K., Neogi, N., Sanders, W.: Dynamic partitioning of large discrete event biological systems for hybrid simulation and analysis. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, Springer, Heidelberg (2004)

    Google Scholar 

  16. Kaynar, D.K., et al.: The Theory of Timed I/O Automata. Synthesis Lectures on Computer Scienc. Morgan Claypool, San Rafael (Nov. 2005), Also available as Technical Report MIT-LCS-TR-917

    Google Scholar 

  17. Lincoln, P., Tiwari, A.: Symbolic systems biology: Hybrid modeling and analysis of biological networks. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 660–672. Springer, Heidelberg (2004)

    Google Scholar 

  18. Luo, C.H., Rudy, Y.: A dymanic model of the cardiac ventricular action potential: I. simulations of ionic currents and concentration changes. Circ. Res. 74, 1071–1096 (1994)

    Google Scholar 

  19. Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O automata. Information and Computation 185(1), 103–157 (2003)

    Article  MathSciNet  Google Scholar 

  20. Mitra, S., Liberzon, D., Lynch, N.: Verifying average dwell time by solving optimization problems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Osborne, M.R., Smyth, G.K.: A modified Prony algorithm for exponential function fitting. SIAM J. Sci. Comput. 16(1), 119–138 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pavlovic, V., et al.: A dynamic bayesian network approach to figure tracking using learned dynamic models. In: Proc. of 7th IEEE Int. Conf. on Computer Vision, IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  23. Singh, A., Hespanha, J.: Models for generegulatory networks using polynomial stochastic hybrid systems. In: CDC05 (2005)

    Google Scholar 

  24. Vidal, R., et al.: An algebraic geometric approach to the identification of a class of linear hybrid systems. In: Proc. of 42nd IEEE Conf. on Decision and Control, IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  25. Ye, P., et al.: Efficient modeling of excitable cells using hybrid automata. In: Computational Methods in Systems Biology Workshop, CMSB’05, Edinburgh, UK (April 2005)

    Google Scholar 

  26. Ye, P., et al.: A cycle-linear approach to modeling action potentials. In: EMBC’06, the IEEE International Conference of the Engineering in Medicine and Biology Society, New York City, NY, September 2006, IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alberto Bemporad Antonio Bicchi Giorgio Buttazzo

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Grosu, R., Mitra, S., Ye, P., Entcheva, E., Ramakrishnan, I.V., Smolka, S.A. (2007). Learning Cycle-Linear Hybrid Automata for Excitable Cells. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds) Hybrid Systems: Computation and Control. HSCC 2007. Lecture Notes in Computer Science, vol 4416. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71493-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71493-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71492-7

  • Online ISBN: 978-3-540-71493-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics