Skip to main content

Evaluating Query-Independent Object Features for Relevancy Prediction

  • Conference paper
Advances in Information Retrieval (ECIR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4425))

Included in the following conference series:

  • 2102 Accesses

Abstract

This paper presents a series of experiments investigating the effectiveness of query-independent features extracted from retrieved objects to predict relevancy. Features were grouped into a set of conceptual categories, and individually evaluated based on click-through data collected in a laboratory-setting user study. The results showed that while textual and visual features were useful for relevancy prediction in a topic-independent condition, a range of features can be effective when topic knowledge was available. We also re-visited the original study from the perspective of significant features identified by our experiments.

This work was supported by ALGRA project (TIN2004-06204-C03-02), FPU scholarship (AP2004-4678) and EPSRC (Ref: EP/C004108/1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ingwersen, P., Belkin, N.: Information retrieval in context - IRiX: workshop at SIGIR 2004. SIGIR Forum 38(2), 50–52 (2004)

    Article  Google Scholar 

  2. Ingwersen, P., Järvelin, K.: Information retrieval in context: IRiX. SIGIR Forum 39(2), 31–39 (2005)

    Article  Google Scholar 

  3. Ruthven, I., et al. (eds.): Proceedings of the 1st IIiX Symposium, Copenhagen, Denmark (2006)

    Google Scholar 

  4. Ingwersen, P., Järvelin, K.: The Turn: Integration of Information Seeking and Retrieval in Context. Springer, Heidelberg (2006)

    Google Scholar 

  5. Kelly, D., Belkin, N.J.: Display time as implicit feedback: understanding task effects. In: Proceedings of the 27th SIGIR Conference, Sheffield, United Kingdom, pp. 377–384. ACM Press, New York (2004)

    Google Scholar 

  6. Fox, S., et al.: Evaluating implicit measures to improve web search. ACM Transactions on Information Systems 23(2), 147–168 (2005)

    Article  Google Scholar 

  7. White, R.W., Ruthven, I., Jose, J.M.: A study of factors affecting the utility of implicit relevance feedback. In: Proceedings of the 28th SIGIR Conference, Salvador, Brazil, pp. 35–42. ACM Press, New York (2005)

    Google Scholar 

  8. Freund, L., Toms, E.G., Clarke, C.L.A.: Modeling task-genre relationships for ir in the workspace. In: Proceedings of the 28th SIGIR Conference, Salvador, Brazil, pp. 441–448. ACM Press, New York (2005)

    Google Scholar 

  9. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)

    MATH  Google Scholar 

  10. Html parser, http://htmlparser.sourceforge.net/

  11. Firefox add-ons, https://addons.mozilla.org/

  12. Duda, R.O., Hart, P.E.: Pattern Classification. Wiley Interscience (2000)

    Google Scholar 

  13. Japkowicz, N., Stephen, S.: The class imbalance problem: A systematic study. Intelligent Data Analysis 6(5), 429–449 (2002)

    MATH  Google Scholar 

  14. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley Sons, New York (1973)

    MATH  Google Scholar 

  15. Webb, G.I., Boughton, J.R., Wang, Z.: Not so naive bayes: aggregating one-dependence estimators. Mach. Learn. 58(1), 5–24 (2005)

    Article  MATH  Google Scholar 

  16. Zhang, H., Jiang, L., Su, J.: Hidden naive bayes. In: Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05), AAAI Press, Menlo Park (2005)

    Google Scholar 

  17. Pearl, J.: Probabilistic Reasoning with Intelligent Systems. Morgan & Kaufman, San Mateo (1988)

    Google Scholar 

  18. Cooper, G.F., Herskovits, E.: A bayesian method for the induction of probabilistic networks from data. Machine Learning 9, 309–347 (1992)

    MATH  Google Scholar 

  19. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997), citeseer.ist.psu.edu/article/kohavi97wrappers.html

    Article  MATH  Google Scholar 

  20. Joho, H., Jose, J.M.: Slicing and dicing the information space using local contexts. In: Proceedings of the First Symposium on Information Interaction in Context (IIiX), Copenhagen, Denmark, pp. 111–126 (2006)

    Google Scholar 

  21. Järvelin, K., Kekäläinen, J.: Ir evaluation methods for retrieving highly relevant documents. In: Proceedings of the 23rd SIGIR Conference, Athens, Greece, pp. 41–48. ACM Press, New York (2000)

    Google Scholar 

  22. Sparck Jones, K.: A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation 28(1), 11–21 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Giambattista Amati Claudio Carpineto Giovanni Romano

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Masegosa, A.R., Joho, H., Jose, J.M. (2007). Evaluating Query-Independent Object Features for Relevancy Prediction. In: Amati, G., Carpineto, C., Romano, G. (eds) Advances in Information Retrieval. ECIR 2007. Lecture Notes in Computer Science, vol 4425. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71496-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71496-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71494-1

  • Online ISBN: 978-3-540-71496-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics