Abstract
Text information processing depends critically on the proper representation of documents. Traditional models, like the vector space model, have significant limitations because they do not consider semantic relations amongst terms. In this paper we analyze a document representation using the association graph scheme and present a new approach called Global Association Distance Model (GADM). At the end, we compare GADM using K-NN classifier with the classical vector space model and the association graph model.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Salton, G.: The SMART Retrieval System - Experiments in Automatic Document Processing. Prentice-Hall, Englewood Cliffs (1971)
Berry, M.: Survey of Text Mining – Clustering, Classification and Retrieval. Springer, Heidelberg (2004)
Feldman, R., Dagan, I.: Knowledge Discovery in Textual Databases (KDT). In: Proc. of the first International Conference on Data Mining and Knowledge Discovery, KDD’95, Montreal, pp. 112–117 (1995)
Kou, H., Gardarin, G.: Similarity Model and Term Association for Document Categorization. In: Andersson, B., Bergholtz, M., Johannesson, P. (eds.) NLDB 2002. LNCS, vol. 2553, pp. 223–229. Springer, Heidelberg (2002)
Becker, J., Kuropka, D.: Topic-based Vector Space Model. In: Proc. of Business Information Systems (BIS) (2003)
Wong, S.K.M., Ziarko, W., Wong, P.C.N.: Generalized Vector Space Model in Information Retrieval. In: Proc. of the 8th Int. ACM SIGIR Conference on Research and Development in Information Retrieval, ACM Press, New York (1985)
Medina-Pagola, J.E., et al.: Similarity Measures in Documents using Association Graphs. In: Sanfeliu, A., Cortés, M.L. (eds.) CIARP 2005. LNCS, vol. 3773, pp. 741–751. Springer, Heidelberg (2005)
Schmid, H.: Probabilistic Part-Of-Speech Tagging Using Decision Tree. In: International Conference on New Methods in Language Processing, Manchester, UK (1994)
Yang, Y.: An evaluation of statistical approaches to text categorization. Journal of Information Retrieval 1(1/2), 67–88 (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Medina-Pagola, J.E., Rodríguez, A.Y., Hechavarría, A., Hernández Palancar, J. (2007). Document Representation Using Global Association Distance Model. In: Amati, G., Carpineto, C., Romano, G. (eds) Advances in Information Retrieval. ECIR 2007. Lecture Notes in Computer Science, vol 4425. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71496-5_52
Download citation
DOI: https://doi.org/10.1007/978-3-540-71496-5_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71494-1
Online ISBN: 978-3-540-71496-5
eBook Packages: Computer ScienceComputer Science (R0)