Skip to main content

Collective Perception in a Robot Swarm

  • Conference paper
Swarm Robotics (SR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4433))

Included in the following conference series:

Abstract

In swarm robotics, hundreds or thousands of robots have to reach a common goal autonomously. Usually, the robots are small and their abilities are very limited. The autonomy of the robots requires that the robots’ behaviors are purely based on their local perceptions, which are usually rather limited. If the robot swarm is able to join multiple instances of individual perceptions to one big global picture (e.g. to collectively construct a sort of map), then the swarm can perform efficiently and such a swarm can target complex tasks. We here present two approaches to realize ‘collective perception’ in a robot swarm. Both require only limited abilities in communication and in calculation. We compare these strategies in different environments and evaluate the swarm’s performance in simulations of fluctuating environmental conditions and with varying parameter settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seyfried, J., Szymanski, M., Bender, N., Estana, R., Thiel, M., Wörn, H.: The I-SWARM Project: Intelligent Small World Autonomous Robots for Micro-Manipulation. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics. LNCS, vol. 3342, pp. 70–83. Springer, Heidelberg (2005)

    Google Scholar 

  2. Kornienko, S., Kornienko, O., Constantinescu, C., Pradier, M., Levi, P.: Cognitive micro-agents: individual and collective perception in a microrobotic swarm. In: Proceedings of the IJCAI-05 Workshop on Agents in Real-Time and Dynamic Environment, Edinburgh, Scotland, pp. 33–42 (2005)

    Google Scholar 

  3. Kornienko, S., Kornienko, O., Levi, P.: Minimalistic approach towards communication and perception in microrobotic swarms. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alberta, Canada, pp. 4005–4011. IEEE, Los Alamitos (2005)

    Google Scholar 

  4. Liu, Y., Passino, K.M.: Biomimicry of Social Foraging Behavior for Distributed Optimization: Models, Principles, and Emergent Behaviors. Journal of Optimization Theory and Applications 115(3), 603–628 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Camazine, S., Deneubourg, J.L., Franks, N., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-organization in biological systems. Princeton University Press, Princeton (2001)

    Google Scholar 

  6. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: From natural to artificial systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  7. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  8. Anderson, C., Ratnieks, F.L.W.: Task partitioning in insect societies. I. Effect of colony size on queueing delay and colony ergonomic efficiency. Am. Naturalist 154, 521–535 (1999)

    Article  Google Scholar 

  9. Ratnieks, F.L.W., Anderson, C.: Task partitioning in insect societies. II. Use of queueing delay information in recruitment. Am. Naturalist 154, 536–548 (1999)

    Article  Google Scholar 

  10. Seeley, T., Towey, C.: Why search time to find a food-storer bee accurately indicates the relative rates of nectar collecting and nectar processing in honey bee colonies. Animal Behaviour 47, 311–316 (1994)

    Article  Google Scholar 

  11. Pratt, S.C.: Optimal timing of comb construction by honeybee (Apis mellifera) colonies: a dynamic programming model and experimental tests. Behavioral Ecology and Sociobiology 46, 30–42 (1999)

    Article  Google Scholar 

  12. Huang, M., Seeley, T.: Multiple unloadings by nectar foragers in honey bees: a matter of information improvement or crop fullness? Insectes Sociaux 50, 1–10 (2003)

    Article  Google Scholar 

  13. Camazine, S.: The regulation of pollen foraging by honey bees: How foragers assess the colony’s need for pollen. Behavioral Ecology and Sociobiology 32, 265–273 (1993)

    Article  Google Scholar 

  14. Camazine, S., Crailsheim, K., Hrassnigg, N., Robinson, G.E., Leonhard, B., Kropiunigg, H.: Protein trophallaxis and the regulation of pollen foraging by honey bees (Apis mellifera L). Apidologie 29, 113–126 (1998)

    Article  Google Scholar 

  15. Schmickl, T., Crailsheim, K.: Inner nest homeostasis in a changing environment with special emphasis on honeybee brood nursing and pollen supply. Apidologie 35, 249–263 (2004)

    Article  Google Scholar 

  16. Crailsheim, K.: The flow of jelly within a honeybee colony. Journal of Comparative Physiology B 162, 681–689 (1992)

    Article  Google Scholar 

  17. Schmickl, T., Crailsheim, K.: Trophallaxis among swarm-robots: A biological inspired strategy for swarm robotics. In: Proceedings of BioRob 2006, Biomedical Robotics and Biomechatronics, Pisa, Italy (2006)

    Google Scholar 

  18. Valdastri, P., Corradi, P., Menciassi, A., Schmickl, T., Crailsheim, K., Seyfried, J., Dario, P.: Micromanipulation, communication and swarm intelligence issues in a microrobotic platform. In: Robotics and Automation Systems (in press)

    Google Scholar 

  19. Payton, D., Daily, M., Estowski, R., Howard, M., Lee, C.: Pheromone Robotics. Autonomous Robots 11, 319–324 (2001)

    Article  MATH  Google Scholar 

  20. Payton, D., Estkowski, R., Howard, M.: Compound behaviors in pheromone robotics. Robotics and Autonomous Systems 44, 229–240 (2003)

    Article  Google Scholar 

  21. Stoy, K.: How do construct dense objects with self-reconfigurable robots. In: Christensen, H.I. (ed.) European Robotics Symposium 2006. STAR, vol. 22, pp. 27–37. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. McLurkin, J.D.: Stupid robot tricks: a behavior-based distributed algorithm library for programming swarms of robots. Master thesis at the MIT (2004)

    Google Scholar 

  23. Trianni, V., Nolfi, S., Dorigo, M.: Hole Avoidance: Experiments in Coordinated Motion on Rough Terrain. In: Groen, F., Amato, N., Bonarini, A., Yoshida, E., Krose, B. (eds.) Intelligent Autonomous Systems 8, pp. 29–36 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erol Şahin William M. Spears Alan F. T. Winfield

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Schmickl, T., Möslinger, C., Crailsheim, K. (2007). Collective Perception in a Robot Swarm. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds) Swarm Robotics. SR 2006. Lecture Notes in Computer Science, vol 4433. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71541-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71541-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71540-5

  • Online ISBN: 978-3-540-71541-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics