Skip to main content

A Proposed Data Mining Approach for Internet Auction Fraud Detection

  • Conference paper
Intelligence and Security Informatics (PAISI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4430))

Included in the following conference series:

  • 2179 Accesses

Abstract

Internet auctions are one of the few successful new business models. Owing to the nature of Internet auctions, e.g. high degree of anonymity, relaxed legal constraints, and low costs for entry and exit, etc..., fraudsters are easily to setup a scam or deception in auction activities. Undeniable fact is that information asymmetry between sellers and buyers and lacking of immediately examining authenticity of the merchandise, the buyer can’t verify the seller and the characteristics of the merchandise until after the transaction is completed. This paper proposes a simple method which is detected potential fraudster by social network analysis (SNA) and decision tree to provide a feasible mechanism of playing capable guardians in buyers’ auction activities. Through our simple method, buyers can easily avoid defraud in auction activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. van Heck, E., Vervest, P.: How Should CIOs Deal With Web-Based Auction? Communication of the ACM 41(7), 99–100 (1998)

    Article  Google Scholar 

  2. National Fraud Information Center: Internet Fraud Statistics Reports (2005), Available from http://www.fraud.org/internet/intstat.htm

  3. Anderson, K.B.: Internet Auction Fraud: What Can We Learn From Consumer Sentinel Data? Federal Trade Commission Report (2004)

    Google Scholar 

  4. National Consumer League Internet Fraud Watch (2000-2005), Internet Fraud Statistics (2005), Available from http://www.fraud.org/internet/intstat.htm

  5. Chua, C.E.H., Wareham, J.: Self-Regulation for Online Auctions: An Analysis. In: Proc. 23rd Int’l Conf. Information Systems, pp. 115–125. Assoc. for Information Systems (2002)

    Google Scholar 

  6. Kauffman, R.J., Wood, C.A.: Premium Bidding in Online Auctions: An Examination of Opportunism and Seller Preference (2006), Available from http://www.mgmt.purdue.edu/academics/mis/workshop/kw_111805.pdf

  7. Chua, C.E.H., Wareham, J.: Fighting Internet Auction Fraud: An Assessment and Proposal. IEEE Computer 37(10), 31–37 (2004)

    Google Scholar 

  8. Resnick, P., et al.: Reputation Systems. Communication of the ACM 43(12), 45–48 (2000)

    Article  Google Scholar 

  9. Resnick, P., Zeckhauser, R.: Trust among Strangers in Internet Transactions: Empirical Analysis of eBay’s Reputation System. Advances in Applied Microeconomics 11, 127–157 (2002)

    Article  Google Scholar 

  10. Houser, D., Wooders, J.: Reputation in Auctions: Theory, and Evidence from eBay. Journal of Economics & Management Strategy 15(2), 353–370 (2006)

    Article  Google Scholar 

  11. Gregg, D.G., Scott, J.E.: The Role of Reputation Systems in Reducing On-Line Auction Fraud. International Journal of Electronic Commerce 10(3), 95–120 (2006)

    Article  Google Scholar 

  12. Ba, S., et al.: Choice of Transaction Channels: The Effects of Product Characteristics on Market Evolution. Journal of Management Information Systems 21(4), 173–197 (2005)

    Google Scholar 

  13. Ba, S., Whinston, A.B., Zhang, H.: Building trust in online auction markets through an economic incentive mechanism. Decision Support Systems 35(3), 273–286 (2003)

    Article  Google Scholar 

  14. Dolan, K.M.: Internet Auction Fraud: The Silent Victims. Journal of Economic Crime Management 2(1), 1–22 (2004)

    Google Scholar 

  15. National White Collar Crime Center, IC3 2005 Internet Crime Report (2005), Available from http://www.nw3c.org/

  16. Wang, J.C., Chiu, C.C., Ker, H.Y.: Detecting Online Auction Fraud of Reputation Inflation through Social Network Structures Embedded in Transaction Records. Journal of Information Management (Taiwan) 12(4), 144–184 (2004)

    Google Scholar 

  17. Haythornthwaite, C.: Social Network Analysis: An Approach and Technique for the Study of Information Exchange. Library & Information Science Research 18(4), 323–342 (1996)

    Article  Google Scholar 

  18. Scott, J.: Social Network Analysis. SAGE Publications, London (2000)

    Google Scholar 

  19. Xu, J., Chen, H.: CrimeNet Explorer: A Framework for Criminal Network Knowledge Discovery. ACM Transactions on Information Systems 23(2), 201–226 (2005)

    Article  Google Scholar 

  20. Xu, J., Chen, H.: Criminal network analysis and visualization. Communication of the ACM 48(6), 100–107 (2005)

    Article  Google Scholar 

  21. Seidman, S.B.: Network Structure and minimum degree. Social Networks, 267-287 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christopher C. Yang Daniel Zeng Michael Chau Kuiyu Chang Qing Yang Xueqi Cheng Jue Wang Fei-Yue Wang Hsinchun Chen

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Ku, Y., Chen, Y., Chiu, C. (2007). A Proposed Data Mining Approach for Internet Auction Fraud Detection. In: Yang, C.C., et al. Intelligence and Security Informatics. PAISI 2007. Lecture Notes in Computer Science, vol 4430. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71549-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71549-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71548-1

  • Online ISBN: 978-3-540-71549-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics