Abstract
Researchers have attempted to explain the power of Genetic Programming (GP) search using various notions of schema. However empirical studies of schemas have been limited due to their vast numbers in typical populations. This paper addresses the problem of analyzing schemas represented by tree-fragments. It describes a new efficient way of representing the huge sets of fragments in a population of GP programs and presents an algorithm to find all fragments using this efficient representation. Using this algorithm, the paper presents an initial analysis of fragments in populations of up to 300 programs, each up to seven nodes deep. The analysis demonstrates a surprisingly large variation in the numbers of fragments through evolution and a non-monotonic rise in the most useful fragments. With his method, empirical investigation of the GP building block hypothesis and schema theory in realistic sized GP systems becomes possible.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Holland, J.: Adaption in Natural and Artificial Systems, vol. 1. The University of Michigan Press, Ann Arbor (1975)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)
Altenberg, L.: The Schema Theorem and Price’s Theorem. In: Whitley, L.D., Vose, M.D. (eds.) Foundations of Genetic Algorithms, vol. 3, Estes Park, Colorado, USA, 31 July–2 August 1994, pp. 23–49. Morgan Kaufmann, Seattle (1995)
O’Reilly, U.M., Oppacher, F.: The troubling aspects of a building block hypothesis for genetic programming. Working Paper 94-02-001, Santa Fe Institute, 1399 Hyde Park Road Santa Fe, New Mexico 87501-8943 USA (1992)
Poli, R., Langdon, W.B.: A new schema theory for genetic programming with one-point crossover and point mutation. Technical Report CSRP-97-3, School of Computer Science, The University of Birmingham, B15 2TT, UK, Presented at GP-97 (January 1997)
Rosca, J.P.: Analysis of complexity drift in genetic programming. In: Koza, R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H., Riolo, R.L. (eds.) Genetic Programming 1997: Proceedings of the Second Annual Conference, Stanford University, CA, USA, 13-16 July 1997, pp. 286–294. Morgan Kaufmann, Seattle (1997)
Whigham, P.A.: A schema theorem for context-free grammars. In: 1995 IEEE Conference on Evolutionary Computation, Perth, Australia, 29 November - 1 December 1995, IEEE Press, New York (1995)
Poli, R., Langdon, W.B.: An experimental analysis of schema creation, propagation and disruption in genetic programming. Technical Report CSRP-97-8, University of Birmingham, School of Computer Science, Presented at ICGA-97 (February 1997)
Langdon, W.B., Banzhaf, W.: Repeated patterns in tree genetic programming. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J.I., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 190–202. Springer, Heidelberg (2005)
Wilson, G.C., Heywood, M.I.: Context-based repeated sequences in linear genetic programming. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J.I., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 240–249. Springer, Heidelberg (2005)
Majeed, H.: A new approach to evaluate GP schema in context. In: Rothlauf, F., et al. (eds.) Genetic and Evolutionary Computation Conference workshop program. GECCO 2005, Washington, D.C., USA, 25-29 June 2005, pp. 378–381. ACM Press, Washington (2005)
Daida, J.M., et al.: Analysis of single-node (building) blocks in genetic programming. In: Spector, L., et al. (eds.) Advances in Genetic Programming 3, pp. 217–241. MIT Press, Cambridge (1999)
Ryan, C., Majeed, H., Azad, A.: A competitive building block hypothesis. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 654–665. Springer, Heidelberg (2004)
Sastry, K., O’Reilly, U.-M., Goldberg, D.E., Hill, D.: Building block supply in genetic programming. In: Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and Practice, pp. 137–154. Kluwer, Dordrecht (2003)
Koza, J.R.: Genetic programming: On the programming of computers by means of natural selection. Statistics and Computing 4, 2 (June 1994)
Rosca, J.P., Ballard, D.H.: Rooted-tree schemata in genetic programming. In: Spector, L., Langdon, W.B., O’Reilly, U.-M., Angeline, P.J. (eds.) Advances in Genetic Programming 3, pp. 243–271. MIT Press, Cambridge (June 1999)
Newman, D., Hettich, S., Blake, C., Merz, C.: UCI repository of machine learning databases (1998), http://www.ics.uci.edu/~mlearn/mlrepository.html
Mangasarian, O.L., Wolberg, W.H.: Cancer diagnosis via linear programming. SIAM News 23(5), 1–18 (1990)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Smart, W., Andreae, P., Zhang, M. (2007). Empirical Analysis of GP Tree-Fragments. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds) Genetic Programming. EuroGP 2007. Lecture Notes in Computer Science, vol 4445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71605-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-71605-1_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71602-0
Online ISBN: 978-3-540-71605-1
eBook Packages: Computer ScienceComputer Science (R0)