Skip to main content

Genetic Algorithms for Word Problems in Partially Commutative Groups

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4446))

Abstract

We describe an implementation of a genetic algorithm on partially commutative groups and apply it to the double coset search problem on a subclass of groups. This transforms a combinatorial group theory problem to a problem of combinatorial optimisation. We obtain a method applicable to a wide range of problems and give results which indicate good behaviour of the genetic algorithm, hinting at the presence of a new deterministic solution and a framework for further results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Booth, R.F., Bormotov, D.Y., Borovik, A.V.: Genetic Algorithms and Equations in Free Groups and Semigroups. Contemp. Math. 349, 63–80 (2004)

    MathSciNet  Google Scholar 

  2. Borovik, A.V., Esyp, E.S., Kazatchkov, I.V., Remeslennikov, V.N.: Divisibility Theory and Complexity of Algorithms for Free Partially Commutative Groups. Contemp. Math. 378 (Groups, Languages, Algorithms) (2005)

    Google Scholar 

  3. Bremermann, H.J.: Optimization Through Evolution and Recombination. In: Yovits, M.C., et al. (ed.) Self-Organizing Systems, pp. 93–106. Spartan Books, Washington (1962)

    Google Scholar 

  4. Holland, J.: Adaptation in Natural and Artificial Systems (5th printing). MIT Press, Cambridge (1998)

    Google Scholar 

  5. Ko, K.-H.: Braid Group and Cryptography. 19th SECANTS, Oxford (2002)

    Google Scholar 

  6. Knuth, D., Bendix, P.: Simple Word Problems in Universal Algebra, Computational Problems in Abstract Algebras. In: Leech, J. (ed.), pp. 263–297. Pergamon Press, Oxford (1970)

    Google Scholar 

  7. Miasnikov, A.D.: Genetic Algorithms and the Andrews-Curtis Conjecture. Internat. J. Algebra Comput. 9(6), 671–686 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Miasnikov, A.D., Myasnikov, A.G.: Whitehead Method and Genetic Algorithms. Contemp. Math. 349, 89–114 (2004)

    MathSciNet  Google Scholar 

  9. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  10. VanWyk, L.: Graph Groups are Biautomatic. J. Pure Appl. Algebra 94(3), 341–352 (1994)

    Article  MathSciNet  Google Scholar 

  11. Vershik, A., Nechaev, S., Bikbov, R.: Statistical Properties of Braid Groups in Locally Free Approximation. Comm. Math. Phys. 212, 59–128 (2000)

    Article  MathSciNet  Google Scholar 

  12. Wrathall, C.: The Word Problem for Free Partially Commutative Groups. J. Symbolic Comp. 6, 99–104 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wrathall, C.: Free partially commutative groups, Combinatorics, Computing and Complexity (Tianjing and Beijing, 1988). In: Math. Appl. (Chin. Ser. 1), pp. 195–216, Kluwer Acad. Publ., Dordrecht (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Carlos Cotta Jano van Hemert

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Craven, M.J. (2007). Genetic Algorithms for Word Problems in Partially Commutative Groups. In: Cotta, C., van Hemert, J. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2007. Lecture Notes in Computer Science, vol 4446. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71615-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71615-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71614-3

  • Online ISBN: 978-3-540-71615-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics