Skip to main content

Genetic-Greedy Hybrid Approach for Topological Active Nets Optimization

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4431))

Included in the following conference series:

  • 2302 Accesses

Abstract

In this paper we propose a genetic and greedy algorithm combination for the optimization of the Topological Active Nets (TAN) model. This is a deformable model used for image segmentation that integrates features of region-based and edge-based segmentation techniques, being able to fit the edges of the objects and model their inner topology. The hybrid approach we propose can optimize the active nets through the minimization of the model energy functions and, moreover, it can provide some segmentation results unreachable by the GA method alone such as changes in the net topology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(2), 321–323 (1988)

    Article  Google Scholar 

  2. Tsumiyama, K.S.Y., Yamamoto, K.: Active net: Active net model for region extraction. IPSJ SIG notes 89(96), 1–8 (1989)

    Google Scholar 

  3. Ansia, F., Penedo, M., Mariño, C., Mosquera, A.: A new approach to active nets. Pattern Recognition and Image Analysis 2, 76–77 (1999)

    Google Scholar 

  4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

    MATH  Google Scholar 

  5. Ibáñez, Ó., Barreira, N., Santos, J., Penedo, M.G.: Topological active nets optimization using genetic algorithms. In: Campilho, A., Kamel, M. (eds.) ICIAR 2006. LNCS, vol. 4141, pp. 272–282. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Ballerini, L.: Medical image segmentation using genetic snakes. In: Application and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation II. Proceedings of SPIE, vol. 3812, pp. 13–23 (1999)

    Google Scholar 

  7. Fan, Y., Jiang, T.Z., Evans, D.J.: Volumetric segmentation of brain images using parallel genetic algorithm. IEEE Tran. on Medical Imaging 21(8), 904–909 (2002)

    Article  Google Scholar 

  8. Tohka, J.: Global optimization of deformable surface meshes based on genetic algorithms. In: Proceedings ICIAP, pp. 459–464. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bartlomiej Beliczynski Andrzej Dzielinski Marcin Iwanowski Bernardete Ribeiro

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Santos, J., Ibáñez, Ó., Barreira, N., Penedo, M.G. (2007). Genetic-Greedy Hybrid Approach for Topological Active Nets Optimization. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71618-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71618-1_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71589-4

  • Online ISBN: 978-3-540-71618-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics