Skip to main content

Epileptic Seizure Prediction Using Lyapunov Exponents and Support Vector Machine

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4432))

Included in the following conference series:

Abstract

The paper presents the method of predicting the epileptic seizure on the basis of EEG waveform analysis. The Support Vector Machine and the largest Lyapunov exponent characterization of EEG segments are employed to predict the incoming seizure. The results of numerical experiments will be presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Babloyantz, A., Destexhe, A.: Low dimensional chaos in an instance of epilepsy. Proc. Natl. Acad. Sci, USA 83, 3513–3517 (1986)

    Article  Google Scholar 

  2. Freeman, W.J.: Strange attractors that govern mammalian brain dynamics shown by trajectories of EEG potentials. IEEE Trans. Circuits and Systems 35, 781–784 (1988)

    Article  MathSciNet  Google Scholar 

  3. Gevins, A., Remond, A.: Handbook of EEG and clinical neurophysiology. Elsevier, Amsterdam (1987)

    Google Scholar 

  4. Iasemidis, L.D., Principe, J.C., Sackellares, J.C.: Measurement and quantification of spatio-temporal dynamics of human seizures. In: Akay, M. (ed.) Nonlinear Signal Processing in Medicine, pp. 1–27. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  5. Iasemidis, L.D., Shiau, D.S., Chaovalitwogse, W., Sackellares, J.C., Pardalos, P.M., Principe, J.C., Carney, P.R., Prasad, A., Veeramani, B., Tsakalis, K.: Adaptive epileptic seizure prediction system. IEEE Trans. Biomed. Eng. 50, 616–627 (2003)

    Article  Google Scholar 

  6. Iasemidis, L., Sackellares, J.C.: Chaos theory in epilepsy. The NeuroScientist 2, 118–126 (1996)

    Article  Google Scholar 

  7. Matlab with toolboxes. MathWorks, Natick, USA (2002)

    Google Scholar 

  8. Nikias, C., Petropulu, A.: Higher order spectral analysis. Prentice-Hall, Upper Saddle River (1993)

    Google Scholar 

  9. Osowski, S.: Neural networks for signal processing. OWPW Warsaw (2000)

    Google Scholar 

  10. Palus, M., Albrecht, V., Dvorak, I.: Information theoretic test for nonlinearity in time series. Phys. Lett. A 175, 203–209 (1993)

    Article  MathSciNet  Google Scholar 

  11. Schölkopf, B., Smola, A.: Learning with kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  12. Swiderski, B., Osowski, S., Rysz, A.: Lyapunov Exponent of EEG Signal for Epileptic Seizure Characterization. In: IEEE Conf. European Circuit Theory and Design Cork (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bartlomiej Beliczynski Andrzej Dzielinski Marcin Iwanowski Bernardete Ribeiro

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Świderski, B., Osowski, S., Cichocki, A., Rysz, A. (2007). Epileptic Seizure Prediction Using Lyapunov Exponents and Support Vector Machine. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71629-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71629-7_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71590-0

  • Online ISBN: 978-3-540-71629-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics