Abstract
An extended method of rough sets, called a method of weighted equivalence classes, is applied to a data table containing imprecise values expressed in a possibility distribution. An indiscerniblity degree between objects is calculated. A family of weighted equivalence classes is obtained via indiscernible classes from a binary relation for indiscernibility between objects. Each equivalence class in the family is accompanied by a possibilistic degree to which it is an actual one. By using the family of weighted equivalence classes we derive a lower approximation and an upper approximation. These approximations coincide with those obtained from methods of possible worlds. Therefore, the method of weighted equivalence classes is justified.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)
Bosc, P., Duval, L., Pivert, O.: An Initial Approach to the Evaluation of Possibilistic Queries Addressed to Possibilistic Databases. Fuzzy Sets and systems 140, 151–166 (2003)
Bosc, P., Liétard, N., Pivert, O.: About the Processing of Possibilistic Queries Involving a Difference Operation. Fuzzy Sets and systems 157, 1622–1640 (2006)
Grahne, G. (ed.): The Problem of Incomplete Information in Relational Databases. LNCS, vol. 554. Springer, Heidelberg (1991)
Greco, S., Matarazzo, B., Slowinski, R.: Handling Missing Values in Rough Set Analysis of Multi-attribute and Multi-criteria Decision Problem. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 146–157. Springer, Heidelberg (1999)
Greco, S., Matarazzo, B., Slowinski, R.: Rough Sets Theory for Multicriteria Decision Analysis. European Journal of Operational Research 129, 1–47 (2001)
Grzymala-Busse, J.W.: On the Unknown Attribute Values in Learning from Examples. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1991. LNCS, vol. 542, pp. 368–377. Springer, Heidelberg (1991)
Grzymala-Busse, J.W.: Data with Missing Attribute Values: Generalization of Indiscernibility Relation and Rule Induction. Transactions on Rough Sets 1, 78–95 (2004)
Grzymala-Busse, J.W.: Characteristic Relations for Incomplete Data: A Generalization of the Indiscernibility Relation. Transactions on Rough Sets 4, 58–68 (2005)
Grzymala-Busse, J.W., Hu, M.: A Comparison of Several Approaches to Missing Attribute Values in Data Mining. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 378–385. Springer, Heidelberg (2001)
Grzymala-Busse, J.W., Rzasa, W.: Local and Global Approximations for Incomplete Data. In: Greco, S., et al. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 244–253. Springer, Heidelberg (2006)
Imielinski, T.: Incomplete Information in Logical Databases. Data Engineering 12, 93–104 (1989)
Imielinski, T., Lipski, W.: Incomplete Information in Relational Databases. Journal of the ACM 31(4), 761–791 (1984)
Kryszkiewicz, M.: Rough Set Approach to Incomplete Information Systems. Information Sciences 112, 39–49 (1998)
Kryszkiewicz, M.: Properties of Incomplete Information Systems in the framework of Rough Sets. In: Polkowski, L., Skowron, A. (eds.) Rough Set in Knowledge Discovery 1: Methodology and Applications. Studies in Fuzziness and Soft Computing, vol. 18, pp. 422–450. Physica, Heidelberg (1998)
Kryszkiewicz, M.: Rules in Incomplete Information Systems. Information Sciences 113, 271–292 (1999)
Kryszkiewicz, M., Rybiński, H.: Data Mining in Incomplete Information Systems from Rough Set Perspective. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications. Studies in Fuzziness and Soft Computing, vol. 56, pp. 568–580. Physica, Heidelberg (2000)
Latkowski, R.: On Decomposition for Incomplete Data. Fundamenta Informaticae 54, 1–16 (2003)
Latkowski, R.: Flexible Indiscernibility Relations for Missing Values. Fundamenta Informaticae 67, 131–147 (2005)
Nakata, N., Sakai, H.: Rough-set-based approaches to data containing incomplete information: possibility-based cases. In: Nakamatsu, K., Abe, J.M. (eds.) Advances in Logic Based Intelligent Systems. Frontiers in Artificial Intelligence and Applications, vol. 132, pp. 234–241. IOS Press, Amsterdam (2005)
Nakata, N., Sakai, H.: Checking Whether or Not Rough-Set-Based Methods to Incomplete Data Satisfy a Correctness Criterion. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558, pp. 227–239. Springer, Heidelberg (2005)
Nakata, N., Sakai, H.: Rough Sets Handling Missing Values Probabilistically Interpreted. In: Ślęzak, D., et al. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 325–334. Springer, Heidelberg (2005)
Nakata, N., Sakai, H.: Applying Rough Sets to Data Tables Containing Probabilistic Information. In: Proceedings of 4th Workshop on Rough Sets and Kansei Engineering, Tokyo, Japan, pp. 50–53 (2005)
Nakata, N., Sakai, H.: Applying Rough Sets to Data Tables Containing Imprecise Information Under Probabilistic Interpretation. In: Greco, S., et al. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 213–223. Springer, Heidelberg (2006)
Orłowska, E., Pawlak, Z.: Representation of Nondeterministic Information. Theoretical Computer Science 29, 313–324 (1984)
Parsons, S.: Current Approaches to Handling Imperfect Information in Data and Knowledge Bases. IEEE Transactions on Knowledge and Data Engineering 83, 353–372 (1996)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z.: Some Issues on Rough Sets. Transactions on Rough Sets 1, 1–58 (2004)
Pawlak, Z., Skowron, A.: Rudiments of Rough Sets. Information Sciences 177, 3–27 (2007)
Pawlak, Z., Skowron, A.: Rough Sets: Some Extensions. Information Sciences 177, 28–40 (2007)
Pawlak, Z., Skowron, A.: Rough Sets and Boolean Reasoning. Information Sciences 177, 41–73 (2007)
Ras, Z.W., Joshi, S.: Query Approximate Answering System for an Incomplete DKBS. Fundamenta Informaticae 30, 313–324 (1997)
Sakai, H.: Some Issues on Nondeterministic Knowledge Bases with Incomplete Information. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 424–431. Springer, Heidelberg (1998)
Sakai, H.: Effective Procedures for Handling Possible Equivalence Relation in Non-deterministic Information Systems. Fundamenta Informaticae 48, 343–362 (2001)
Sakai, H., Nakata, M.: An Application of Discernibility Functions to Generating Minimal Rules in Non-deterministic Information Systems. Journal of Advanced Computational Intelligence and Intelligent Informatics 10, 695–702 (2006)
Sakai, H., Okuma, A.: Basic Algorithms and Tools for Rough Non-deterministic Information Systems. Transactions on Rough Sets 1, 209–231 (2004)
Słowiński, R., Stefanowski, J.: Rough Classification in Incomplete Information Systems. Mathematical and Computer Modelling 12(10/11), 1347–1357 (1989)
Stefanowski, J., Tsoukià s, A.: On the Extension of Rough Sets under Incomplete Information. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 73–81. Springer, Heidelberg (1999)
Stefanowski, J., Tsoukià s, A.: Valued Tolerance and Decision Rules. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 212–219. Springer, Heidelberg (2001)
Stefanowski, J., Tsoukià s, A.: Incomplete Information Tables and Rough Classification. Computational Intelligence 17(3), 545–566 (2001)
Zimányi, E., Pirotte, A.: Imperfect Information in Relational Databases. In: Motro, A., Smets, P. (eds.) Uncertainty Management in Information Systems: From Needs to Solutions, pp. 35–87. Kluwer Academic Publishers, Dordrecht (1997)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this chapter
Cite this chapter
Nakata, M., Sakai, H. (2007). Lower and Upper Approximations in Data Tables Containing Possibilistic Information. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W. (eds) Transactions on Rough Sets VII. Lecture Notes in Computer Science, vol 4400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71663-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-71663-1_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71662-4
Online ISBN: 978-3-540-71663-1
eBook Packages: Computer ScienceComputer Science (R0)