Skip to main content

Hybrid Rough Sets-Population Based System

  • Chapter
Transactions on Rough Sets VII

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 4400))

  • 528 Accesses

Abstract

The integration of mathematical and statistical data analysis research can engender a novel and better approach, especially for survival analysis. This paper is devoted to Professor Pawlak and his ideas about rough sets and its applications. We propose MULTIHYRIS, an alternative hybrid intelligent system with a rough sets and population based approach for survival analysis. MULTIHYRIS is designed to increase the versatility and efficiency of survival analysis techniques. The MULTIHYRIS architecture incorporates mathematics - rough sets (with discernibility relations and individual patient consideration) - with statistics - Kaplan-Meier and Cox methods (with population estimates). The central idea behind MULTIHYRIS is to perform univariate analysis by using rough sets, database management and the Kaplan-Meier method with soft computing.

All results from the univariate analysis are subsequently used in further mulitvariate analysis. In this stage, we provide two optional approaches to serve different requirements; rough sets integrated with database management and the Cox method. The former approach is able to produce decision rules while the latter generates a Cox model. Furthermore, set operations are used to unite these two outcomes and generate new reducts - hybrid reducts based on our rough sets-population based system. The informativeness of the rules and models can be verified within this analysis by validation processes and statistical tests. To demonstrate MULTIHYRIS, we have implemented it on a real-world geriatric data set, collected from the Dalhousie Medical School.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pawlak, Z.: Rough Sets. Int. J. Inform. Comput. Sc. 11(5), 341–356 (1982)

    Article  MathSciNet  Google Scholar 

  2. Pawlak, Z.: Rough Sets. In: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  3. Pawlak, Z.: Decision Networks. In: Tsumoto, S., et al. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 1–7. Springer, Heidelberg (2004)

    Google Scholar 

  4. Pawlak, Z.: Rough Sets and Flow Graphs. In: Ślęzak, D., et al. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 1–11. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Pawlak, Z.: Some Remarks on Conflict Analysis. European Journal of Operational Research 166, 649–654 (2005)

    Article  MATH  Google Scholar 

  6. Pawlak, Z.: Some Issues on Rough Sets. T. Rough Sets, 1–58 (2004)

    Google Scholar 

  7. Pawlak, Z.: A Treatise on Rough Sets. T. Rough Sets, 1–17 (2005)

    Google Scholar 

  8. Pawlak, Z., Skowron, A.: Rudiments of Rough Sets. Inform. Sciences 177(1), 3–27 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Pawlak, Z., Skowron, A.: Rough Sets: Some Extensions. Inform. Sciences 177(1), 28–40 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Pawlak, Z., Skowron, A.: Rough Sets and Boolean Reasoning. Inform. Sciences 177(1), 41–73 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bazan, J., et al.: Rough Set Approach to the Survival Analysis. In: Alpigini, J.J., et al. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 522–529. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Bazan, J., et al.: Searching for the Complex Decision Reducts: The Case Study of the Survival Analysis. In: Zhong, N., et al. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 160–168. Springer, Heidelberg (2003)

    Google Scholar 

  13. Kaplan, E.L., Meier, P.: Nonparametric Estimation from Incomplete Observations. J. of the Amer. Stat. Asso. 53, 457–481 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  14. Li, J., Cercone, N.: Discovering and Ranking Important Rules. In: Proc. of the IEEE GrC, Beijing, China, IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  15. Pattaraintakorn, P., Cercone, N., Naruedomkul, K.: Hybrid Intelligent Systems: Selecting Attributes for Soft-Computing Analysis. In: Proc. of COMPSAC, pp. 319–325 (2005)

    Google Scholar 

  16. Kusiak, A., Dixon, B., Shah, S.: Predicting Survival Time for kidney Dialysis Patients: A Data Mining Approach. Computers in Biology and Medicine 35, 311–327 (2005)

    Article  Google Scholar 

  17. Pattaraintakorn, P., Cercone, N., Naruedomkul, K.: Selecting Attributes for Soft-Computing Analysis in Hybrid Intelligent Systems. In: Ślęzak, D., et al. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 698–708. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Larry, M.R.: Hybrid Intelligent System. Kluwer Academic Publishers, Boston (1995)

    Google Scholar 

  19. Komorowski, J., Polkowski, L., Skowron, A.: Rough Sets: A Tutorial. In: Pal, S.K., Showorn, A. (eds.) Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98. Springer, Heidelberg (1999)

    Google Scholar 

  20. Hu, X., Han, J., Lin, T.Y.: A New Rough Sets Models Based on Database Systems. Fund. Inform. 59(2-3), 1–18 (2004)

    MathSciNet  Google Scholar 

  21. Cox, D.R.: The Analysis of Exponentially Distributed Life-times with Two Types of Failure. J. of the Royal Statistical Society 21, 411–422 (1959)

    MATH  Google Scholar 

  22. An, A., Cercone, N.: ELEM2: A Learning System for More Accurate Classifications. In: Mercer, R.E. (ed.) Canadian AI 1998. LNCS, vol. 1418, pp. 426–441. Springer, Heidelberg (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

James F. Peters Andrzej Skowron Victor W. Marek Ewa Orłowska Roman Słowiński Wojciech Ziarko

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Pattaraintakorn, P., Cercone, N. (2007). Hybrid Rough Sets-Population Based System. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W. (eds) Transactions on Rough Sets VII. Lecture Notes in Computer Science, vol 4400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71663-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71663-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71662-4

  • Online ISBN: 978-3-540-71663-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics