Skip to main content

Multivariate Segmentation in the Analysis of Transcription Tiling Array Data

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4453))

  • 1539 Accesses

Abstract

Tiling DNA microarrays extend current microarray technology by probing the non-repeat portion of a genome at regular intervals in an unbiased fashion. A fundamental problem in the analysis of these data is the detection of genomic regions that are differentially transcribed across multiple conditions. We propose a linear time algorithm based on segmentation techniques and linear modeling that can work at a user-selected false discovery rate. It also attains a four-fold sensitivity gain over the only competing algorithm when applied to a whole genome transcription data set spanning the embryonic development of Drosophila melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.affymetrix.com/transcriptome

  2. http://www.ncbi.nlm.nih.gov/geo

  3. http://www.affymetrix.com/Auth/support/developer/downloads/Tools/seg-limo.zip

  4. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5053

  5. http://transcriptome.affymetrix.com/publication/drosophila_development/

  6. http://genome.ucsc.edu

  7. Bellman, R.: On the approximation of curves by line segments using dynamic programming. Communications of the ACM 4(6), 284 (1961)

    Article  Google Scholar 

  8. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B. Methodological 57(1), 289–300 (1995)

    MATH  MathSciNet  Google Scholar 

  9. Bernstein, B.E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D.K., Huebert, D.J., McMahon, S., Karlsson, E.K., Kulbokas, E.J., Gingeras, T.R., et al.: Genomic Maps and Comparative Analysis of Histone Modifications in Human and Mouse. Cell 120(2), 169–181 (2005)

    Article  Google Scholar 

  10. Bieda, M., Xu, X., Singer, M.A., Green, R., Farnham, P.J.: Unbiased location analysis of E 2 F 1-binding sites suggests a widespread role for E 2 F 1 in the human genome. Genome Research 16(5), 595 (2006)

    Article  Google Scholar 

  11. Bolstad, B.M., Irizarry, R.A, Åstrand, M., Speed, T.P.: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2), 185–193 (2003)

    Article  Google Scholar 

  12. Broman, K.W., Speed, T.P.: A model selection approach for the identification of quantitative trait loci in experimental crosses. Journal of the Royal Statistical Society, Series B 64(4), 641–656 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. David, L., Huber, W., Granovskaia, M., Toedling, J., Palm, C.J., Bofkin, L., Jones, T., Davis, R.W., Steinmetz, L.M.: A high-resolution map of transcription in the yeast genome. Proc. Natl. Acad. Sci. U S A 103(14), 5320–5325 (2006)

    Article  Google Scholar 

  14. Kampa, D., et al.: Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Research 14(3), 331–342 (2004)

    Article  Google Scholar 

  15. Helt, G., et al.: http://www.affymetrix.com/support/developer/tools/downloadigb.affx

  16. Castle, J., et al.: Optimization of oligonucleotide arrays and RNA amplification protocols for analysis of transcript structure and alternative splicing. Genome Biology 4, R66 (2003)

    Article  Google Scholar 

  17. Cheng, J., et al.: Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science, 307 (2005)

    Google Scholar 

  18. Manak, J.R., et al.: Biological function of unannotated transcription during the early development of Drosophila melanogaster. Nature Genetics 38, 1151–1158 (2006)

    Article  Google Scholar 

  19. Bertone, P., et al.: Global identificaion of human transcribed sequences with genome tiling arrays. Science 306, 2242–2246 (2004)

    Article  Google Scholar 

  20. Kapranov, P., et al.: Large-scale transcriptional activity in chromosomes 21 and 22. Science 296, 916–919 (2002)

    Article  Google Scholar 

  21. Irizarry, R.A., et al.: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2), 249–264 (2002)

    Article  Google Scholar 

  22. Cawley, S., et al.: Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of non-coding rnas. Cell 116(4), 499–511 (2004)

    Article  Google Scholar 

  23. Keles, S., et al.: Multiple testing methods for chip-chip high density oligonucleotide array data. Technical Report 147, U.C. Berkeley Division of Biostatistics, June (2004)

    Google Scholar 

  24. Frey, B.J., Mohammad, N., Morris, Q.D., Zhang, W., Robinson, M.D., Mnaimneh, S., Chang, R., Pan, Q., Sat, E., Rossant, J., et al.: Genome-wide analysis of mouse transcripts using exon microarrays and factor graphs. Nat. Genet. 37(9), 991–996 (2005)

    Article  Google Scholar 

  25. Jeon, Y., Bekiranov, S., Karnani, N., Kapranov, P., Ghosh, S., MacAlpine, D., Lee, C., Hwang, D.S., Gingeras, T.R., Dutta, A.: Temporal profile of replication of human chromosomes. Proceedings of the National Academy of Sciences 102(18), 6419–6424 (2005)

    Article  Google Scholar 

  26. Ji, H., Wong, W.H.: TileMap: create chromosomal map of tiling array hybridizations. Bioinformatics 21(18), 3629–3636 (2005)

    Article  Google Scholar 

  27. Johnson, W.E., Li, W., Meyer, C.A., Gottardo, R., Carroll, J.S., Brown, M., Liu, X.S.: Model-based analysis of tiling-arrays for ChIP-chip. Proc. Natl. Acad. Sci. U S A 103(33), 12457–12462 (2006)

    Article  Google Scholar 

  28. Li, W., Meyer, C.A., Liu, X.S.: A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences. Bioinformatics 21(1), 274–282 (2005)

    Article  Google Scholar 

  29. Li, W.: Dna segmentation as a model selection process. In: RECOMB, pp. 204–210 (2001)

    Google Scholar 

  30. Mockler, T.C., Ecker, J.R.: Applications of DNA tiling arrays for whole-genome analysis. Genomics 85, 1–15 (2005)

    Article  Google Scholar 

  31. Munch, K., Gardner, P.P., Arctander, P., Krogh, A.: A hidden Markov model approach for determining expression from genomic tiling micro arrays. BMC Bioinformatics 7(1), 239 (2006)

    Article  Google Scholar 

  32. Oliver, B.: Tiling dna microarrays for fly genome cartography. Nature Genetics 38, 1101–1102 (2006)

    Article  Google Scholar 

  33. Picard, F., Robin, S., Lavielle, M., Vaisse, C., Daudin, J.J.: A statistical approach for array CGH data analysis. BMC Bioinformatics 6(1), 27–27 (2005)

    Article  Google Scholar 

  34. Piccolboni, A., Xu, N.: An HSMM-based algorithm for espression detection in tiling DNA microarray data. In: Genome Informatics, Cold Spring Harbor, New York, October 2005, p. 117. Cold Spring Harbor Laboratory (2005)

    Google Scholar 

  35. ENCODE project consortium,: The ENCODE (ENCyclopedia of DNA elements) project. Science 306, 636–640 (2004)

    Article  Google Scholar 

  36. Storey, J.D., Tibshirani, R.: SAM thresholding and false discovery rates for detecting differential gene expression in DNA microarrays. In: The Analysis of Gene Expression Data: Methods and Software (2003)

    Google Scholar 

  37. Toyoda, T., Shinozaki, K.: Tiling array-driven elucidation of transcriptional structures based on maximum-likelihood and Markov models. The Plant Journal 43(4), 611 (2005)

    Article  Google Scholar 

  38. Willenbrock, H., Fridlyand, J., Journals, O.: A comparison study: applying segmentation to array CGH data for downstream analyses. Bioinformatics 21(22), 4084–4091 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Terry Speed Haiyan Huang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Piccolboni, A. (2007). Multivariate Segmentation in the Analysis of Transcription Tiling Array Data. In: Speed, T., Huang, H. (eds) Research in Computational Molecular Biology. RECOMB 2007. Lecture Notes in Computer Science(), vol 4453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71681-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71681-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71680-8

  • Online ISBN: 978-3-540-71681-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics