Skip to main content

Towards Evolutionary Network Reconstruction Tools for Systems Biology

  • Conference paper
Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics (EvoBIO 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4447))

Abstract

Systems biology is the ever-growing field of integrating molecular knowledge about biological organisms into an understanding at the systems level. For this endeavour, automatic network reconstruction tools are urgently needed. In the present contribution, we show how the applicability of evolutionary algorithms to systems biology can be improved by a domain-specific representation and algorithmic extensions, especially a separation of network structure evolution from evolution of kinetic parameters. In a case study, our presented tool is applied to a model of the mitotic spindle checkpoint in the human cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B., Johnson, A., Lewis, J.: Essential Cell Biology. Garland Publishing, New York (2003)

    Google Scholar 

  2. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming, An Introduction: On The Automatic Evolution of Computer Programs And Its Applications. Morgan Kaufmann, San Francisco (1998)

    MATH  Google Scholar 

  3. Beyer, H., Schwefel, H.: Evolution strategies. Natural Computing 1, 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burnham, K.P., Anderson, D.R.: Model selection and inference: a practical information-theoretic approach. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  5. Chung, E., Chen, R.-H.: Spindle Checkpoint Requires Mad1-bound and Mad1- free Mad2. Molecular Biology of the Cell 13, 1501–1511 (2002)

    Article  Google Scholar 

  6. Cooper, B.L., Schonbrunner, N., Krauss, G.: Biochemistry of signal transduction and regulation. Wiley-VCH, Weinheim (2001)

    Google Scholar 

  7. Deckard, A., Sauro, H.M.: Preliminary Studies on the In Silico Evolution of Biochemical Networks. ChemBioChem. 5, 1423–1431 (2004)

    Article  Google Scholar 

  8. Fang, G.: Checkpoint Protein BubR1 Acts Synergistically with Mad2 to Inhibit Anaphase-promoting Complex. Molecular Biology of the Cell 13, 755–766 (2002)

    Article  Google Scholar 

  9. Finney, A., Hucka, M.: Systems biology markup language: Level 2 and beyond. Biochem. Soc. Trans. 31(Pt. 6), 1472–1473 (2003)

    Google Scholar 

  10. François, P., Hakim, V.: Design of Genetic Networks With Specified Functions by Evolution in silico. PNAS 101, 580–585 (2004)

    Article  Google Scholar 

  11. Funahashi, A., Tanimura, N., Morohashi, M., Kitano, H.: CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. BIOSILICO 1, 159–162 (2003)

    Article  Google Scholar 

  12. Ibrahim, B., Diekmann, S., Schmitt, E., Dittrich, P.: Compartmental Model of Mitotic Spindle Checkpoint Control Mechanism. BMCBioinformatic, Submitted Paper (2006)

    Google Scholar 

  13. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  14. Koza, J.R., Mydlowec, W., Lanza, G., Yu, J., Keane, M.A.: Automatic Synthesis of Both the Topology and Sizing of Metabolic Pathways using Genetic Programming. In: Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 57–65. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  15. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  16. Machne, R., Finney, A., Muller, S., Lu, J., Widder, S., Flamm, C.: The SBML ODE Solver Library: a native API for symbolic and fast numerical analysis of reaction networks. Bioinformatics 22(11), 1406–1407 (2006)

    Article  Google Scholar 

  17. Paladugu, S.R., Chickarmane, V., Deckard, A., Frumkin, J.P., McCormack, M., Sauro, H.M.: In Silico Evolution of Functional Modules in Biochemical Networks. IEE Proceedings-Systems Biology 153(4) (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elena Marchiori Jason H. Moore Jagath C. Rajapakse

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Lenser, T., Hinze, T., Ibrahim, B., Dittrich, P. (2007). Towards Evolutionary Network Reconstruction Tools for Systems Biology. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds) Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics. EvoBIO 2007. Lecture Notes in Computer Science, vol 4447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71783-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71783-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71782-9

  • Online ISBN: 978-3-540-71783-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics