Skip to main content

Genetic Programming and Other Machine Learning Approaches to Predict Median Oral Lethal Dose (LD50) and Plasma Protein Binding Levels (%PPB) of Drugs

  • Conference paper
Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics (EvoBIO 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4447))

Abstract

Computational methods allowing reliable pharmacokinetics predictions for newly synthesized compounds are critically relevant for drug discovery and development. Here we present an empirical study focusing on various versions of Genetic Programming and other well known Machine Learning techniques to predict Median Oral Lethal Dose (LD50) and Plasma Protein Binding (%PPB) levels. Since these two parameters respectively characterize the harmful effects and the distribution into human body of a drug, their accurate prediction is essential for the selection of effective molecules. The obtained results confirm that Genetic Programming is a promising technique for predicting pharmacokinetics parameters, both from the point of view of the accurateness and of the generalization ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archetti, F., Lanzeni, S., Messina, E., Vanneschi, L.: Genetic programming for human oral bioavailability of drugs. In: M. Cattolico (ed.) Proceedings of the 8th annual conference on Genetic and Evolutionary Computation, Seattle, Washington, USA, pp. 255–262 (2006)

    Google Scholar 

  2. Colmenarejo, G., Alvarez-Pedraglio, A., Lavandera, J.L.: Chemoinformatic models to predict binding affinities to human serum albumin. Journal of Medicinal Chemistry 44, 4370–4378 (2001)

    Article  Google Scholar 

  3. Akaike, H.: Information theory and an extension of maximum likelihood principle. In: 2nd International Symposium on Information Theory, Akademia Kiado (June 1973)

    Google Scholar 

  4. van de Waterbeemd, H., Gifford, E.: ADMET in silico modeling: towards prediction paradise? Nature Reviews Drug Discovery 2, 192–204 (2003)

    Article  Google Scholar 

  5. Van de Waterbeemd, H., Rose, S.: In: Wermuth, L.G. (ed.) The Practice of Medicinal Chemistry, 2nd edn., pp. 1367–1385. Academic Press, San Diego (2003)

    Google Scholar 

  6. Van de Waterbeemd, H., Smith, D.A., Jones, B.C.: Lipophilicity in PK design: methyl, ethyl, futile. Journal of Computationally aided Molecular Design 15, 273–286 (2001)

    Article  Google Scholar 

  7. Kola, I., Landis, J.: Can the pharmaceutical industry reduce attrition rates? Nature Reviews Dug Discovery 3, 711–716 (2004)

    Article  Google Scholar 

  8. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer series in statistics. Springer, Heidelberg (1999)

    Google Scholar 

  9. Feng, J., Lurati, L., Ouyang, H., Robinson, T., Wang, Y., Yuan, S., Young, S.S.: Predictive toxicology: benchmarking molecular descriptors and statistical methods. Journal of Chemical Information Computer Science 43, 1463–1470 (2003)

    Article  Google Scholar 

  10. Zupan, J., Gasteiger, P.: Neural Networks in chemistry and drug design: an introduction, 2nd edn. Wiley, Chichester (1999)

    Google Scholar 

  11. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 71–83. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Koza, J.R.: Genetic Programming. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  13. Berezhkovskiy, L.M.: Determination of Drug Binding to Plasma Proteins Using Competitive Equilibrium Binding to Dextran-Coated Charcoal. Journal of Pharmacokinetics and Pharmacodynamics 33(5), 920–937 (2006)

    Article  Google Scholar 

  14. Hall, M.A.: Correlation-based Feature Selection for Machine Learning. PhD thesis, Department of Computer Science, Waikato University, Hamilton, NZ (1998)

    Google Scholar 

  15. Nicolotti, O., Gillet, V.J., Fleming, P.J., Green, D.V.: Multiobjective optimization in quantitative structure-activity relationships: deriving accurate and interpretable QSARs. Journal Med. Chem. 45(23), 5069–5080 (2002)

    Article  Google Scholar 

  16. Rousseeuw, P.J., Leroy, A.M.: Robust regression and outlier detection. Wiley, New York (1987)

    MATH  Google Scholar 

  17. Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley-VCH, Weinheim (2000)

    Google Scholar 

  18. REACH. Registration, Evaluation and Authorisation of Chemicals (2006), http://ec.europa.eu/environment/chemicals/reach/reach_intro.htm

  19. David, S., Wishart, C., Knox, A.C., Guo, S., Shrivastava, M., Hassanali, P., Stothard, Z., Chang, Z., Woolsey J.: DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34 (2006), doi:10.1093/nar/gkj067

    Google Scholar 

  20. Haykin, S.: Neural Networks: a comprehensive foundation. Prentice Hall, London (1999)

    MATH  Google Scholar 

  21. Smola, A.J., Scholkopf, B.: A Tutorial on Support Vector Regression. Technical Report, Technical Report Series - NC2-TR-1998-030, NeuroCOLT2 (1999)

    Google Scholar 

  22. Kennedy, T.: Managing the drug discovery/development interface. Drug Discovery Today 2, 436–444 (1997)

    Article  Google Scholar 

  23. Martin, T.M., Young, D.M.: Prediction of the Acute Toxicity (96-h LC50) of Organic Compounds to the Fathead Minnow (Pimephales promelas) Using a Group Contribution Method. Chemical Research in Toxicology 14(10), 1378–1385 (2001)

    Article  Google Scholar 

  24. Tetko, I.V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P., Palyulin, V.A., Radchenko, E.V., Zefirov, N.S., Makarenko, A.S., Tanchuk, V.Y., Prokopenko, V.V.: Virtual computational chemistry laboratory - design and description. Journal of Computer Aided Molecular Design 19, 453–463 (2005), see www.vcclab.org

    Article  Google Scholar 

  25. Norinder, U., Bergstrom, C.A.S.: Prediction of ADMET properties. ChemMedChem 1, 920–937 (2006)

    Article  Google Scholar 

  26. Venkatraman, V., Dalby, A.R., Yang, Z.R.: Evaluation of mutual information and genetic programming for feature selection in QSAR. Journal Chem. Inf. Comput. Sci. 44(5), 1686–1692 (2004)

    Article  Google Scholar 

  27. Langdon, W. B., Barrett, S. J.: Genetic Programming in data mining for drug discovery. In: Evolutionary computing in data mining, pp. 211–235 (2004)

    Google Scholar 

  28. Weka: a multi-task machine learning software developed by Waikato University, see (2006), http://www.cs.waikato.ac.nz/ml/weka/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elena Marchiori Jason H. Moore Jagath C. Rajapakse

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Archetti, F., Lanzeni, S., Messina, E., Vanneschi, L. (2007). Genetic Programming and Other Machine Learning Approaches to Predict Median Oral Lethal Dose (LD50) and Plasma Protein Binding Levels (%PPB) of Drugs. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds) Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics. EvoBIO 2007. Lecture Notes in Computer Science, vol 4447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71783-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71783-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71782-9

  • Online ISBN: 978-3-540-71783-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics