Skip to main content

Abstract

The ability to measure the transcriptional response after a stimulus has drawn much attention to the underlying gene regulatory networks. Here, we evaluate the application of methods to reconstruct gene regulatory networks by applying them to the SOS response of E. coli, the budding yeast cell cycle and in silico models. For each network we define an a priori validation network, where each interaction is justified by at least one publication. In addition to the existing methods, we propose a SVD based method (NSS). Overall, most reconstruction methods perform well on in silico data sets, both in terms of topological reconstruction and predictability. For biological data sets the application of reconstruction methods is suitable to predict the expression of genes, whereas the topological reconstruction is only satisfactory with steady-state measurements. Surprisingly, the performance measured on in silico data does not correspond with the performance measured on biological data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K., Tomita, M.: Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics 19(5), 643–645 (2003)

    Article  Google Scholar 

  2. van Someren, E.P., Wessels, L.F., Reinders, M.J.: Linear modeling of genetic networks from experimental data. In: Proc. Int. Conf. Intell. Syst. Mol. Biol., vol. 8, pp. 355–366 (2000)

    Google Scholar 

  3. Yeung, M.K.S., Tegner, J., Collins, J.J.: Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. USA 99(9), 6163–6168 (2002)

    Article  Google Scholar 

  4. Bergmann, S., Ihmels, J., Barkai, N.: Similarities and differences in genome-wide expression data of six organisms. PLoS Biol. 2(1) E9 (2004)

    Google Scholar 

  5. Pedraza, J.M., van Oudenaarden, A.: Noise propagation in gene networks. Science 307(5717), 1965–1969 (2005)

    Article  Google Scholar 

  6. Kuhlman, T.Z., Zhang, M.H.S., Hwa, T.: Cooperativity, sensitivity, and combinatorial control:quantitative dissection of a bacterial promoter. Submitted to PNAS (2006)

    Google Scholar 

  7. van Someren, E.P., Vaes, B.L.T., Steegenga, W.T., Sijbers, A.M., Dechering, K.J., Reinders, M.J.T.: Least Absolute Regression Network Analysis of the murine osteoblast differentiation network. Bioinformatics (December 2005)

    Google Scholar 

  8. Soinov, L.A., Krestyaninova, M.A., Brazma, A.: Towards reconstruction of gene networks from expression data by supervised learning. Genome Biol. 4(1) R6 (2003)

    Google Scholar 

  9. Supper, J., Spieth, C., Zell, A.: Reverse engineering non-linear gene regulatory networks based on the bacteriophage lambda ci circuit. In: IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) (2005)

    Google Scholar 

  10. Weaver, D.C., Workman, C.T., Stormo, G.D.: Modeling regulatory networks with weight matrices. In: Pac. Symp. Biocomput., vol. 1, pp. 112–123 (1999)

    Google Scholar 

  11. van Someren, E., Wessels, L., Reinders, M.: Genetic network models: A comparative study. In: Micro-arrays: Optical Technologies and Informatics. Proc. of SPIE vol. 4266 (2001)

    Google Scholar 

  12. Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., Davis, R.W.: A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2(1), 65–73 (1998)

    Article  Google Scholar 

  13. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9(12), 3273–3297 (1998)

    Google Scholar 

  14. Eisen, M.B., Brown, P.O.: DNA arrays for analysis of gene expression. Methods Enzymol. 303, 179–205 (1999)

    Article  Google Scholar 

  15. Chen, K.C., Calzone, L., Csikasz-Nagy, A., Cross, F.R., Novak, B., Tyson, J.J.: Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15(8), 3841–3862 (2004)

    Article  Google Scholar 

  16. Gardner, T.S., di Bernardo, D., Lorenz, D., Collins, J.J.: Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301(5629), 102–105 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elena Marchiori Jason H. Moore Jagath C. Rajapakse

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Supper, J., Spieth, C., Zell, A. (2007). Reconstructing Linear Gene Regulatory Networks. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds) Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics. EvoBIO 2007. Lecture Notes in Computer Science, vol 4447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71783-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71783-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71782-9

  • Online ISBN: 978-3-540-71783-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics