Skip to main content

Bacterial Foraging Algorithm with Varying Population for Optimal Power Flow

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4448))

Included in the following conference series:

Abstract

This paper proposes a novel optimization algorithm, Bacterial Foraging Algorithm with Varying Population (BFAVP), to solve Optimal Power Flow (OPF) problems. Most of the conventional Evolutionary Algorithms (EAs) are based on fixed population evaluation, which does not achieve the full potential of effective search. In this paper, a varying population algorithm is developed from the study of bacterial foraging behavior. This algorithm, for the first time, explores the underlying mechanisms of bacterial chemotaxis, quorum sensing and proliferation, etc., which have been successfully merged into the varying-population frame. The BFAVP algorithm has been applied to the OPF problem and it has been evaluated by simulation studies, which were undertaken on an IEEE 30-bus test system, in comparison with a Particle Swarm Optimizer (PSO) [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.C.: “Particle swarm optimization,”. In: IEEE international Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press, NJ, New York (1995)

    Google Scholar 

  2. Carpentier, J.: “Contribution to the econimoc dispatch problem,”. Bull. Soc. Franc. Elect. 8, 431–447 (1962)

    Google Scholar 

  3. Alsac, O., Scott, B.: “Optimal load flow with steady state security,”. IEEE Trans. on Power Appara. Syst. PAS-93, 745–751 (1974)

    Article  Google Scholar 

  4. Bottero, M.H., Galiana, F.D., Fahmideh-Vojdani, A.R.: “Economic dispatch using the reduced Hessian,”. IEEE Trans. on Power Appara. Syst. PAS-101, 3679–3688 (1982)

    Article  Google Scholar 

  5. Reid, G.F., Hasdorf, A.R.: “Economic dispatch using quadratic programming,”. IEEE Trans. on Power Appara. Syst. PAS-92, 2015–2023 (1973)

    Article  Google Scholar 

  6. Stott, B., Hobson, E.: “Power system security control calculation using linear programming,”. IEEE Trans. on Power Appara. Syst. 97, 1713–1731 (1978)

    Article  Google Scholar 

  7. Momoh, J.A., Zhu, J.Z.: “Improved interior point method for OPF problems,”. IEEE Trans on Power Syst. 14, 1114–1120 (1999)

    Article  Google Scholar 

  8. Wei, H., Sasaki, H., Kubokawa, J., Yokoyama, R.: “IAn interior point nonlinear programming for optimal power flow problems with a novel structure,”. IEEE Trans on Power Syst. 13, 870–877 (1998)

    Article  Google Scholar 

  9. Bakirtzis, A.G., Biskas, P.N., Zoumas, C.E., Petridis, V.: “Optimal Power Flow by Enhanced Genetic Algorithm,”. IEEE Transactions on Power Systems 17(2), 229–236 (2002)

    Article  Google Scholar 

  10. Passino, K.M.: “Biomimicry of Bacterial Foraging for Distributed Optimization and Control,”. IEEE Control Systems Magazine 22(3), 52–67 (2002)

    Article  MathSciNet  Google Scholar 

  11. Bar Tana, J., Howlett, B.J., Koshland, D.E.: “Flagellar formation in Escherichia coli electron transport mutants,”. Journal of Bacterial 130, 787–792 (1977)

    Google Scholar 

  12. Clerc, M., Kennedy, J.: “The particle swarm: Explosion, stability, and convergence in a multi-dimensional complex space,”. IEEE Trans. on Evolutionary Computation 6, 58–73 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, M.S., Tang, W.J., Tang, W.H., Wu, Q.H., Saunders, J.R. (2007). Bacterial Foraging Algorithm with Varying Population for Optimal Power Flow. In: Giacobini, M. (eds) Applications of Evolutionary Computing. EvoWorkshops 2007. Lecture Notes in Computer Science, vol 4448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71805-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71805-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71804-8

  • Online ISBN: 978-3-540-71805-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics