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Abstract
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definitions themselves.
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1 Introduction

Aspect-oriented Software Development (AOSD) is a recent, yet established
development paradigm that enhances existing development paradigms with
advanced encapsulation and modularisation capabilities [1,2]. In particular,
aspect-oriented programming languages provide a new kind of abstraction,
called aspect, that allows a developer to modularise the implementation of
crosscutting concerns such as synchronisation, transaction management, ex-
ception handling, etc. Such concerns are traditionally spread across various
modules in the implementation, causing tangled and scattered code [1]. The
improved modularity and separation of concerns [3], that can be achieved
using aspects, intends not only to aid initial development, but also to allow
developers to better manage software complexity, evolution and reuse.

One of the most essential characteristics of an aspect-oriented programming
language is that aspects are not explicitly invoked but instead, are implicitly
invoked [4]. This has also been referred to as the ‘obliviousness’ property of
aspect orientation [5]. It means that the base program (i.e., the program with-
out the aspects) does not explicitly invoke the aspects because the aspects
themselves specify when and where they need to be invoked by means of a
pointcut definition. A pointcut essentially specifies a set of join points, which
are specific points in the base program where the aspect will be invoked im-
plicitly. Such a pointcut definition typically relies on structural and behavioral
properties of the base program to express the intended join points. For exam-
ple, if an aspect must be triggered at the instantiation of each new object of a
particular class, its pointcut must capture those join points whose properties
correspond to the execution of the constructor method. As a result, each time
the constructor method is executed (i.e. an instance is created), the aspect is
invoked. In most aspect languages, the invocation of an aspect corresponds to
the execution of an advice, which is a sequence of instructions executed before,
after or around the execution of the join point.

In the development of aspect-oriented programs, the definition and mainte-
nance of appropriate pointcuts is often a complex activity. First of all, an
aspect developer must carefully analyze and understand the structure of the
entire application and the properties shared by all intended join points in
particular. Some of these properties can be directly tied to abstractions that
are available in the programming language but other properties are based on
programming conventions such as naming schemes. ‘Object instantiation’ join
points, for example, can be identified as the execution of constructor methods
in languages such as Java. Accessing methods, however, can be identified only
if the developers adhere to a particular naming scheme, such as through put-
and get- prefixes in the method names. In contrast, a language such as C#
again facilitates the identification of such accessor-method join points because



they are part of the language structure (through the C# ‘properties’ language
feature). In essence, we can say that the more structure is available in the im-
plementation, the more properties are available for the definition of pointcuts,
effectively facilitating their definition. However, structure that originates from
programming conventions rather than language structure is usually not explic-
itly tied to a property that is available for use in a pointcut definition. This is
especially problematic in languages with very few structural elements such as
Smalltalk. In such languages, application development typically relies heavily
on the use of programming conventions for the implementation of particular
concepts such as accessors, constructors and many more application-specific
concepts. As a result, aspect developers are forced to explicitly encode these
conventions in pointcut expressions, often resulting in complex, fragile, and
hard to maintain pointcut expressions.

We propose to facilitate the definition and maintenance of pointcuts through
an aspect-oriented programming language that features an open, logic-based
pointcut mechanism. This allows us to reify the structural conventions as
explicit properties available for use in pointcut definitions. Aspect developers
can then define pointcuts in terms of explicit application-specific properties in-
stead of implicit intricate structural details of the code. In turn, these intricate
details are confined in the definition of the properties, which actually assert
an application-specific model over the code. The application-specific model,
as well as the pointcuts, are defined using a logic language (SOUL [6]) that
exhibits some well-adapted characteristics for the definition and specialization
of an application-specific model. This approach builds upon previous work on
logic-based pointcut languages, where we have described how the essential
language features of a logic language render it into an adequate pointcut defi-
nition language [7]. In this paper, we further exploit the full power of the logic
programming language for the definition of application-specific properties. In
particular, we have implemented our approach through an integration of the
AspectS [8] and CARMA [7] aspect languages for Smalltalk.

In the following section, we discuss a number of pointcuts, implemented in
AspectS, that rely on typical structural conventions that are adhered to by
application developers in a Smalltalk environment. We explain how such point-
cuts are complex, fragile, and hard to maintain. Next, section 3 describes how
to deal with these issues by means of application-specific models and point-
cuts, implemented in the integration of AspectS and CARMA, called Aspect-
SOUL. Section 5 applies the approach to aspects that operate on the drag and
drop infrastructure of the Ul framework and the refactoring browser in the
Smalltalk environment. We summarize related and future work in section 6
before concluding the paper.



2 Pointcuts based on Structural Conventions

When developing an application, developers often agree on particular pro-
gramming conventions, design rules and patterns to structure their imple-
mentation. The intention of these structural implementation conventions is to
render particular concepts more explicit in the implementation. For example,
if all developers adhere to the same naming convention for all ‘accessor’ meth-
ods, we can more easily distinguish such accessors from any other method.
In the context of aspects, the implementation structure that is introduced by
these conventions is also often exploited in pointcut definitions.

In this section, we demonstrate this principle by studying the structural con-
vention used to implement accessor and mutator methods, a simple but often-
used pattern in Smalltalk. After a brief summary of the AspectS framework,
we present a couple of aspects in AspectS whose pointcuts rely on these con-
ventions to capture the execution of accessor methods. Finally, we discuss how
pointcuts that implicitly capture the notion of an accessor method using the
coding conventions, become more complex and easily suffer from the fragile
pointcut problem.

2.1 AspectS

AspectS [8] is a Smalltalk extension for aspect-oriented programming. Unlike
most other approaches to aspect-oriented programming, AspectS does not ex-
tend the Smalltalk programming language with new language constructs for
writing down aspects and advice expressions. Instead, AspectS is a frame-
work approach to AOP. Aspects are implemented as subclasses of the class
AsAspect, pointcuts are written as Smalltalk expressions that return a col-
lection of join point descriptors and advices can be implemented as methods
whose name begins with advice and which return an instance of AsAdvice.
Two of the subclasses of AsAdvice can be used to implement either an around
advice or a before/after advice. An instance can be created by calling a method
which takes as its arguments qualifiers, a block implementing the pointcut, and
blocks to implement the before, after or around effects of the advice.

An example advice method is shown in Figure 1. It specifies that any invoca-
tion of an eventDoubleClick: method implemented by WindowSensor or any
of its subclasses should be logged. The effect of the advice is implemented in
the block passed to the beforeBlock: parameter. When one of the methods
specified by the pointcut needs to be executed, this block is executed right be-
fore the execution of the method’s body. The block is passed a few arguments:
the receiver object in which the method is executed, the arguments passed to



adviceEventDoubleClick

~ AsBeforeAfterAdvice
qualifier: (AsAdviceQualifier attributes: #(receiverInstanceSpecific))
pointcut: [
WindowSensor withAllSubclasses
select: [:each |
each includesSelector: #eventDoubleClick:]
thenCollect: [:each |
AsJoinPointDescriptor targetClass: each targetSelector: #eventDoubleClick:]]
beforeBlock: [:receiver :arguments :aspect :client |
self showHeader: ’>>> EventDoubleClick >>>’
receiver: receiver
event: arguments first]

Fig. 1. Example advice definition in AspectS.

the method, the aspect and the client. In this example, the block simply logs
some of its arguments to the transcript. Note that it calls a method on self,
aspect classes can implement regular methods besides advice methods as well.
The pointcut is implemented by the block passed to the pointcut: argument.
It returns a collection of AsJoinpointDescriptor instances. This collection
is computed using the Smalltalk meta-object protocol and collection enumer-
ation messages: the collection of WindowSensor and all of its subclasses is
filtered to only those that implement a method named eventDoubleClick:,
an AsJoinpointDescriptor is then collected for each of these.

Advice qualifiers specify dynamic conditions that should hold if the advice is
to be executed. These conditions are implemented as activation blocks: blocks
that take as arguments an aspect object and a stack frame. The framework
defines a number of activation blocks, that fall in two categories: checks done
on the top of the stack, or on lower levels of the stack. The former are used
for example to restrict advice execution to sender /receiver-specific activation:
an advice on a method is only executed if the method is executed in a specific
receiver object, or was invoked by a specific sender object, or is associated
with a specific thread of control. The latter are used for control-flow related
restrictions, such as only executing an advice on a method if the same method
is not currently on the stack. The activation blocks have names, which are
specified in the attributes of an AsAdviceQualifier. In the example advice,
one activator block is specified: receiverInstanceSpecific.

Aspects can be woven into the Smalltalk image by sending an explicit install
message to an aspect instance. The install method collects all advice ob-
jects in the class and executes their pointcut blocks to get the collection of join
point descriptors. The methods designated by these descriptors are then dec-
orated by wrappers [9], one for each advice affecting this particular method.
The wrappers check the activation blocks specified in their advice, passing
them the aspect and the top stack frame (accessed using the thisContext re-
flective feature of Smalltalk [10]). If an activation condition does not hold, the
wrapper simply executes the next wrapper (if any), or the original method.
If all activation conditions hold, the wrapper executes the advice’s around,



before, and/or after block, and then proceeds to the next wrapper (if any) in
the proper order, or the original method.

2.2 Pointcuts on Accessors and Mutators

We will now use the AspectS framework to implement an aspect that captures
the execution of accessor and mutator methods in Smalltalk applications. In
Smalltalk, clients are not allowed to directly access the instance variables of
an object, and therefore they need to access them by means of dedicated
methods. For each instance variable, a developer specifies an accessor method
to retrieve the value of the variable, and a mutator method to change its
value. Although these are regular Smalltalk methods, accessors and mutators
are easily recognized since they are almost always implemented in an idiomatic
way.

Most accessor and mutator methods are implemented according to the follow-
ing structural convention:

e Both methods are classified in the accessing protocol;

e The selector of the accessor method corresponds with the name of the in-
stance variable;

e The selector of the mutator method also corresponds with the name of the
variable, however, this method takes one input parameter, namely the value
to be assigned to the variable.

Moreover, the body of the accessor and mutator methods also follows a pro-
totypical implementation. For example, suppose we have a Person class with
an instance variable named name. The accessor and mutator methods for this
variable are:

Person>>name
“name

Person>>name: anObject
name := anObject

Since the join point models of current-day aspect languages do not explicitly
reify these accessor and mutator methods as a separate kind of join points,
aspect developers must exploit the structural conventions described above in
order to capture the concept in a pointcut. For example, to capture all calls to
accessor methods, the aspect developer can implement the following pointcut
in AspectS:
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[l all |
all := OrderedCollection new.
Root.Smalltalk allClasses do:
[:eachClass |
all addAll: (eachClass organization listAtCategoryNamed: #accessing)
select: [:aSelector | eachClass alllnstVarNames
includes: aSelector asString]
thenCollect: [:eachSelector |
AsJoinPointDescriptor targetClass: eachClass
targetSelector: eachSelector])].
alll

The above pointcut makes the implicit assumption that accessor methods are
rigorously implemented using the naming scheme in which the name of the
method corresponds with the name of the instance variable. Lines 5 to 7 of the
pointcut reflect the naming convention on which the pointcut is based. These
lines select all messages corresponding to the name of an instance variable,
and whose method is also classified in the accessing protocol.

As long as the developers of the base code adhere to the naming convention
on which the pointcut relies, it will correctly capture all accessors. However,
if a developer of the base program deviates from the naming convention, by
for instance renaming the instance variable without also renaming the selector
of the accessor, the pointcut no longer captures the correct set of join points.
Instead of relying on naming conventions, a pointcut developer can also exploit
the stereotypical implementation of accessor methods. This would result in the
following pointcut:

[l all |
all := OrderedCollection new.
Root.Smalltalk allClasses do:
[:eachClass |
all addAll:(eachClass allSelectors
select: [:eachSelector |
eachClass selectorReturnsInstVar: eachSelector
]
thenCollect: [:eachSelector |
AsJoinPointDescriptor targetClass: eachClass
targetSelector: eachSelector])].
alll

Line 7 of the pointcut above invokes code that selects all methods which con-
tain a return statement that directly returns the value of an instance variable.
While this pointcut is not fragile with respect to changes in the names of
instance variables, it still assumes that the base code developer rigorously
followed the implementation idiom. However, often there exist slight varia-
tions on the programming idioms on which a pointcut is based. Consider for
instance the following accessor method:

Person>>friends
~ friends isNil ifTrue:[friends := OrderedCollection new] ifFalse:[friends].

This method presents a variation on the often-used programming idiom for
accessor methods. Instead of directly returning the value of the instance vari-



able, the method checks wether the variable has already been initialized, and
if not, will set its value to an empty OrderedCollection. It is clear that this
lazy-initialised version of accessor methods will not be captured by the point-
cut which assumes that the accessor is implemented using a return statement
that directly returns the value of the variable. In other words, the pattern that
is expressed in the previous pointcut does not apply to this method, although
it is an accessor method.

2.3  Complezity and Fragility

Although the example pointcuts described above rely on a rather simple struc-
tural implementation convention, their definition and maintenance is already a
rather complex activity. First of all, an aspect developer needs to know and un-
derstand the intricate implementation details of the structural convention and
implement a pointcut expression for it. The lazy-initialized accessor methods
in the example above illustrate that there often exist a number of variations to
the programming conventions used to implement a certain concept. Therefore,
any pointcut that needs to capture the execution of an accessor method needs
to capture all possible variations, which easily leads to complex and lengthy
pointcut expressions. This is especially the case because the part of the point-
cut which reasons about the join points and the part which expresses the
structural convention are not clearly separated. In our example above, only a
couple of lines of both pointcuts express the coding convention, while the other
parts perform the actual selection of join points which are associated with the
accessor methods. It is not instantly clear which part of the pointcut pertains
to the coding convention, further complicating the reuse and maintenance of
the pointcut expression.

Finally, the aspect developer must also carefully analyse the changes and ad-
ditions to the base program in subsequent evolutions, which are possibly made
by other developers. In essence, the definition of a pointcut that explicitly re-
lies on structural conventions to capture an application-specific concept easily
suffers from the fragile pointcut problem [11,12]. Due to the tight coupling
between the pointcut and the implementation, seemingly safe modifications
to the implementation may result in the pointcut no longer capturing the cor-
rect set of join points. For example, if the base program developers do not
adhere to the coding conventions, or change the convention by for instance
using the prefixes put- and get- to indicate a mutator or an accessor method
respectively, the pointcut no longer captures the correct set of join points.



3 Application-specific Pointcuts and Models

We alleviate the problems outlined in the previous section through the defini-
tion of application-specific pointcuts that are expressed in terms of an application-
specific model. Such an application-specific model is implemented as an ex-
tension to the pointcut mechanism and it identifies high-level, application-
specific properties in the implementation and makes them available for use
in pointcuts. Aspect developers can make use of these properties to define
application-specific pointcuts, i.e. pointcuts that are no longer defined in terms
of the low-level implementation details but, instead, are defined in terms of
application-specific properties defined by the model. As a result, the intricate
low-level details in the implementation remain confined to the implementation
of the application-specific model, which is also the responsibility of the base
program developers. The application-specific model effectively becomes an ad-
ditional abstraction layer that is imposed over the implementation and it acts
as a contract between the base program developers and the aspect developers.

Base program developer Aspect developer

g

Application-specific model /7 [ T TTTTTTTTTTTTTTTT \
Appllcatlon specmc pointcut :

d in terms of !

(R ? 7? application-specific model) | !

/\ q) S /A S — ,

[ I
/

Source code based
pointcut
. (defined directly in terms |
of source code)

Legend
l specified in terms of

C) application-specific property

Fig. 2. Application-specific pointcuts are defined in terms of an application-specific
model.

Figure 2 illustrates how application-specific pointcuts, implemented by the as-
pect developers, depend on the definition of the application-specific model that
is certified by the base program developers. The application-specific pointcuts
are defined in terms of the application-specific model which, in turn, is de-
fined in terms of the implementation. This decoupling of the pointcuts from
the intricate details of the implementation allows that base program devel-
opers define and maintain the application-specific model. In other words, the
tight coupling to the implementation that is present in the source-code based
pointcuts is effectively transferred to a more appropriate location, i.e. the
definition of the application-specific model.



We have implemented this approach in AspectSOUL, an integration of the
CARMA pointcut language [7] and AspectS [8]. In AspectSOUL, pointcuts
are no longer written as Smalltalk expressions. Instead, pointcuts are written
using the dedicated pointcut language of CARMA that is based on the logic
programming language SOUL. Naturally, such a dedicated query language of-
fers advantages for writing pointcuts, as pointcuts are essentially queries over
a join point database. The integration of this logic-based pointcut language
with AspectS further enforces the framework nature of AspectS by provid-
ing a full-fledged query-based pointcut language that can be extended with
application-specific pointcut predicates. In essence, we combine the advantages
of an extensible framework for defining advice expressions with the advantages
of a dedicated and extensible pointcut language. In the remainder of this sec-
tion, we first introduce CARMA and AspectSOUL and we subsequently focus
on how the open, logic-based pointcut language provides developers with an
adequate means to handle complex and hard-to-maintain pointcut expressions.

3.1 CARMA

CARMA is a pointcut language based on logic metaprogramming for reasoning
about dynamic join points. Unlike pointcuts in AspectS, CARMA pointcuts
do not express conditions on methods, its join points are representations of
dynamic events in the execution of a Smalltalk program. CARMA defines a
number of logic predicates for expressing conditions on these join points, and
pointcuts are written as logic queries using these predicates. It is possible to
express conditions on dynamic values associated with the join points. Fur-
thermore, logic predicates are provided for querying the static structure of the
Smalltalk program. These predicates are taken from the LiCoR library of logic
predicates for logic metaprogramming [13]. The underlying language of this

library and CARMA is the SOUL logic language [13,6].

The SOUL logic language is akin to Prolog [14], but has a few differences.
Some of these are just syntactical, such as that variables are notated with ques-
tion marks rather than capital letters, the “:-" symbol is written as if, and
lists are written between angular (<>) instead of square brackets ([]). More
importantly, SOUL is in linguistic symbiosis with the underlying Smalltalk
language, allowing Smalltalk objects to be bound to logic variables and the
execution of Smalltalk expressions as part of the logic program [15]. The sym-
biosis mechanism is what allows CARMA to express conditions on dynamic
values associated with join points which are actual Smalltalk objects, such as

the arguments of a message.

The advantage of building a pointcut language on the logic programming
paradigm lies in the declarative nature of this paradigm. No explicit control
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design LiCoR [

visitor, factory, CARMA ]
badSmell

basic reasoning

classWithInstvarOfType,
abstractMethod

reification lexical extent joinpoint type-based
class, methodInClass, within, reception, send,
superclassOf, shadowOf reference,
parseTreeOfMethod blockExecution

Fig. 3. Organization of, and example predicates in LiCoR and CARMA.

structures for looping over a set of classes or methods are necessary in point-
cuts, as this is hidden in the logic language [16]. A pointcut simply states
the conditions that a join point should meet in order to activate an advice,
without specifying how those join points are computed. This makes declara-
tive pointcuts, given some basic knowledge of logic programming of course,
easier to read. A logic language also provides some advanced features such as
unification that make it easier to write advanced pointcuts. A full discussion is
outside the scope of this paper, but a more comprehensive analysis was given
in earlier work [7]. In the next sections, we will however show how some of
these features — particularly the ability to write multiple rules for the same
predicate — are useful for writing model-based pointcuts.

The predicates in CARMA and LiCoR are organized into categories, as shown
in Figure 3. The LiCoR predicates are organized hierarchically, with higher
predicates defined in terms of the lower ones. The predicates in the “reifica-
tion” category provide the fundamental access to the structure of a Smalltalk
program: these predicates can be used to query the classes and methods in
the program, and the fundamental relations between them such as which class
is a superclass of which other class. The “basic reasoning” predicates define
predicates that can be used to query more complex relations: which classes
indirectly inherit from another class, which methods are abstract, which types
an instance variable can possibly have etc. The “design” category contains
predicates about design information in programs: there are for example pred-
icates encoding design patterns [17] and refactoring “bad smells”[18].

The CARMA predicates access the dynamic structure of a Smalltalk program.
There are two categories of predicates in CARMA, neither is defined in terms
of each other, nor in terms of the LiCoR predicates. Nevertheless, the purpose
of the “lexical extent” predicates is to link the dynamic and static structure, so
that reasoning about both can be mixed in a pointcut. The within predicate
for example can be used to express that a join point is the result of executing an

11



adviceEventDoubleClick

~ AsCARMAAroundAdvice
qualifier: (AsAdviceQualifier attributes: #())
pointcutQuery: ’reception(?jp, #eventDoubleClick:, 7args),
within(?jp, ?class, ?selector),
classInHierarchyOf (?class, [WindowSensor])’
aroundBlock: [:receiver :arguments :aspect :client :clientMethod |
self showHeader: ’>>> EventDoubleClick >>>’
receiver: receiver
event: arguments first.
clientMethod valueWithReceiver: receiver arguments: arguments]

Fig. 4. Example AspectS advice definition with a CARMA pointcut.

expression in a certain method. The “type-based” join point predicates are the
basic predicates of CARMA, they express conditions on certain types of join
points and basic data associated with those. An example is the reception
predicate which is used to express that a join point should be of the type
“message reception”, which means it represents the execution of a message
to an object. Besides the join point, the predicate has parameters for the
basic associated data: the selector of the message and its arguments. There
are also a few other predicates in CARMA (not shown in the figure), such
as the inObject predicate which links a join point to the object in which it
is executed. In the case of a reception join point, this is the receiver of the
message.

A pointcut in CARMA is written as a logic query that results in join points.
By convention, the variable to which these are bound is called “?jp”. The
join point representations should only be manipulated through the predicates
provided by CARMA. An example pointcut is given in the next section.

3.2 CARMA Pointcuts in AspectS

AspectSOUL, the integration of CARMA with AspectS, is realized by sub-
classing the advice classes of AspectS so that a CARMA pointcut can be spec-
ified instead of a Smalltalk expression. The signature of the instance creation
message for these subclasses is similar to the original. It takes as arguments
a string with a CARMA pointcut, qualifiers and an around or before and/or
after block. The message does a mapping to the instance creation message of
the superclass. This is not a direct 1-on-1 mapping however, because CARMA
pointcuts are about dynamic join points, in contrast with the more static join
points of AspectS. Also, because AspectS does not support aspects that in-
tercept block execution nor variable accesses or assignments, these features of
CARMA are not adopted in AspectSOUL.

An example of an AspectS advice with a CARMA pointcut is shown in Fig-
ure 4. This is an around variant of the first example advice (of Figure 1), with
a pointcut that has the same effect. The first condition in the pointcut speci-

12



reception(?jp, #eventDoubleClick:, <7event>),
objectTestHolds(7event, #isYellow)

Fig. 5. A CARMA pointcut with a condition on a dynamic value.

fies that 7jp must be a message reception join point, where the selector of the
message is eventDoubleClick:. The arguments of the message are bound to
the variable 7args. However, 7args is not used any further in the pointcut
which means that no conditions are put on the argument list. The second
condition expresses that the join point must occur lexically in a method with
name ?selector in the class 7class. For a message reception join point, this
is effectively the method that is executed to handle the message. The final con-
dition expresses that the class ?class should be in the hierarchy of the class
WindowSensor. The block has the same effect as in the first example, except
that here it explicitly calls the next wrapper (if any) or original method.

Figure 5 gives an example of a CARMA pointcut which does express conditions
on the arguments of a message reception. The first condition expresses that 7 jp
must be a message reception join point of the message eventDoubleClick:,
where the argument list unifies with the list <?event>. Thus the argument
list has to have one argument, which is bound to the variable 7event. The
value of 7event is the actual Smalltalk event object that is sent as the argu-
ment of eventDoubleClick. The second condition uses the objectTestHolds
predicate, which uses the symbiosis mechanism of SOUL to express that the
object in 7event must respond true to the message isYellow. Thus, this
pointcut captures join points when a message about a double click event of
the yellow mouse button is sent to some object. Expressing the same in As-
pectS can only be done by defining an appropriate qualifier, or by including
the dynamic condition in the around block of the advice. The CARMA ap-
proach means that what conceptually should go into a pointcut can be better
separated from the effect of the advice: that we only want to intercept double
click events of the yellow mouse button is part of the “when” of the advice, not
of the “what effect” it has. All of the qualifiers of AspectS can be expressed
in CARMA, except for the control-flow qualifiers because CARMA does not
currently support a construct similar to the cflow pointcut of AspectJ [19].

For completeness, Figure 6 provides an implementation of the accessor point-
cuts of section 2.2 in CARMA. Lines 1 to 6 implement the pointcut that is
based on the naming convention and lines 8 to 13 present the pointcut that
relies on the structure of the methodbody. In particular, lines 1 to 4 of the
first pointcut reflect the naming convention and lines 5 and 6 will intercept
all messages which correspond to the naming convention. Similarly, lines 8 to
11 of the second pointcut select all methods which contain a return statement
that directly returns the value of an instance variable. As with the previous
pointcut, lines 12 and 13 capture all occurrences of these methods. Both of
these pointcuts are equally fragile as their AspectS-counterparts. We will now
re-implement these pointcuts into application-specific pointcuts expressed in

13
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class(?class),
methodWithNameInClass (?method, ?accessor,?class),
instanceVariableInClassChain(?accessor,?class),
methodInProtocol(?method, accessing),
reception(?joinpoint,?accessor,?args),
withinClass(?joinpoint,?class)

class(?class),
methodWithNameInClass (?method, ?selector,?class),
instanceVariableInClassChain(?var,?class),
methodWithReturnStatement (?method,variable(?var)),
reception(?joinpoint,?selector,?args),
withinClass(?joinpoint,?class)

Fig. 6. Accessor pointcuts in CARMA.

terms of an application-specific model.

3.8 Application-specific Models and Pointcuts using AspectSOUL

Both the application-specific pointcuts and the application-specific model are
implemented using SOUL logic metaprograms. In essence, the application-
specific model defines a set of logic predicates that reify application-specific
properties of the implementation, based on the conventions that are adhered
to by the developers. Because the application-specific model is built as an
extension to the pointcut mechanism, aspect developers can straightforwardly
use these predicates in the definition of application-specific pointcuts to access
the application-specific properties. Furthermore, the essential features of a
logic language also facilitate the use and extension of the application-specific
model.

In the following subsection, we define application-specific models for the ac-
cessors convention that was described in the previous section. Subsequently,
we use these models to redefine the pointcuts of the previous section into
application-specific pointcuts.

3.8.1 Application-specific Model

An application-specific model defines a set of logic predicates that are avail-
able for use in an (application-specific) pointcut. These logic predicates are
implemented using SOUL logic metaprograms. We illustrate the definition of
an application-specific model by means of the accessors and mutators example.

The model that defines the accessor and mutator method properties consists
of two predicates:

accessor(?class, ?method, ?var)
mutator (?class, ?method, ?var)
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These predicates declare the accessor and mutator properties over methods
named ?method defined in ?class. Furthermore, they also extract the name
of the variable ?var that is accessed or modified. The implementation of these
predicates captures the coding convention that is followed by the developer of
the application. For example, the following implementation of the accessor
predicate combines the two separate conventions from Figure 6:

accessor(?class, ?methodName, ?varName) if
class(?class),
instanceVariableInClassChain(?varName,?class),
methodWithNameInClass (?method, ?methodName, ?class),
equals(?varName, 7methodName) ,
methodInProtocol(?method, accessing),
accessorForm(?method, ?varName) .

accessorForm(?method, ?7var) if
returnStatement (?method,variable(?var))

The logic program above consists of two rules that each implement a predi-
cate: accessor and accessorForm. The first predicate is defined in terms of
the second one and a variety of predicates that are available in LiCoR. The
first rule captures the naming convention of accessor methods as well as their
classification in the ‘accessing’ protocol, as we described earlier. The verifi-
cation of the idiomatic implementation of the accessor method is located in
the second rule. This rule verifies if the method’s implementation consists of a
single return statement that consists of a single expression: the variable. As a
consequence, the above logic metaprogram classifies methods of the following
form as accessor methods:

Person>>name
“name

3.8.2  Application-specific Pointcuts

Once the application-specific model is defined by the base program develop-
ers, the aspect developers can use it to define application-specific pointcuts.
For example, the application-specific pointcut that captures the execution of
accessor methods can now be written as follows:

reception(?joinpoint,?selector,?args),
accessor(?class,?selector, ?var)

This application-specific pointcut no longer relies on a particular coding con-
vention for accessor methods, as opposed to source-code based pointcuts. In-
stead, it relies on the application-specific property of an accessor method that
is provided by the application-specific model. The base program developers
ensure that this model is maintained such that all accessor methods are cor-
rectly identified. Furthermore, because the pointcut definition now explicitly
states that it captures the execution of accessor methods, it is more readable
and understandable to other developers. Of course, the above pointcut is a
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rather simple use of a single application-specific property. However, a single
application-specific property does not correspond to a single pointcut. For ex-
ample, consider the following pointcut that is defined in terms of the accessor
and mutator properties:

reception(?joinpoint,?selector,?args),
accessor(?class,?selector,?var),
mutator (?class,?otherSelector, ?var)

This pointcut matches all accessor method execution join points for variables
for which there also exists a mutator method. It can, for example, be used in
a synchronisation aspect to execute a write lock advice.

4 Model Extension and Parameterization

In the previous section, we have constructed application-specific models and
pointcuts using a logic metalanguage. We have also argued how the declara-
tive style of a logic language facilitates the definition of pointcuts. Likewise,
the definition of application-specific models is also facilitated through the use
of a logic metalanguage. First of all, the definition of the model in a logic
metalanguage can be extended in a straightforward manner. Such extensions
are often required when a new structural coding convention (for a concept
that is already covered by the model) is agreed upon by the developers. Sec-
ondly, a single logic predicate can be used in many different ways. Each of its
arguments can be used both as a parameter and as a return value, i.e. they
are multi-way parameters. Fortunately, the definition of a logic predicate does
not have to explicitly deal with all possible ways, and their combinations. In
the following subsections, we explain each of these advantages in more detail.

4.1 Eztending the Model

A specific advantage of building the application-specific model using a logic
metalanguage is that we can easily extend the model through the definition
of alternative logic rules for existing predicates. For example, the application-
specific model that we defined above does not classify all accessor methods
correctly. There exist many more possible implementations of accessor meth-
ods, such as the lazy-initialisation presented in section 2.2. Because the coding
convention is now explicitly defined in the application-specific model and be-
cause the application-specific model is restricted to the coding conventions
only, the base program developers can easily extend it to accommodate ad-
ditional accessor forms. This is in contrast to when the coding convention is
implicitly used in a pointcut definition. More importantly, because the model
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is defined as a logic metaprogram, additional accessor forms can be defined
using alternative definitions for the accessor predicate. For example, we can
extend the definition of this property to include lazy-initialised accessor meth-
ods by including the following logic rule:
accessorForm(?method, ?var) if
returnStatement (?method,send(?nilCheck, [#’ifTrue:ifFalse:’ ],<7trueBlock,?falseBlock>)),
nilCheckStatement (?nilCheck, ?var),

statementsOfBlock(<assign(?var,?varinit)>,?trueBlock),
statementsOfBlock (<?var>,?falseBlock)

The above logic metaprogram provides an alternative definition for the
accessorForm predicate. These alternatives are placed in a logical disjunction
with the already existing alternatives and, as a result, our application-specific
model also ties the accessor property to methods of the following form:

Person>>friends
~ friends isNil ifTrue:[friends := OrderedCollection new] ifFalse:[friends].

However, the following accessor method does not correspond to the coding
convention:

Person>>phoneNumbers
~ phoneNumbers ifNil:[phoneNumbers := OrderedCollection new] ifNotNil:[phoneNumbers].

Therefore, we can again define an alternative logic rule that detects accessor
methods of the above form:

accessorForm(?method, ?var) if
returnStatement (?method,send(?var, [#’ifNil:ifNotNil:’ ],<?nilBlock,?notNilBlock>)),
statements0fBlock(<assign(?var,?varinit)>,?nilBlock),
statements0fBlock(<?var>, ?notNilBlock)

Such extensions of the model are particularly useful if different developers im-
plement different modules of the same base program. If all developers agree
on a single application-specific model (i.e. a set of properties implemented by
predicates), they can each follow their own programming convention to imple-
ment each property. For example, one set of developers might even agree on
the use of put and get prefixes for all accessor methods while other developers
can follow the common Smalltalk convention that we just explained. The first
group of developers then needs to define an alternative logic rule that correctly
detects methods prefixed with put and get and implemented in their part of
the base program as accessor methods.

However, alternatives need to be added and used with care. There can be
conflicting definitions and other developers might also not be aware of the
conventions that were included as extensions. Therefore, in the approach we
present in this paper, we assume that all developers are aware of the con-
ventions that are relied upon by the model. We refer the interested reader to
other work [12] that focuses on the verification of the conventions in the im-
plementation of the application in a context of aspect-oriented programming.
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4.2 Multi-way Property Parameters

The definition of an application-specific model using a logic metalanguage does
not only allow developers to associate structural conventions to properties
available for use in pointcuts. In addition, the properties can be parameter-
ized and expose values associated to the property. For example, the accessor
predicate does not only expose particular methods as accessor methods along
with the actual variable that is accessed by the method *, the predicate can
also be used to retrieve all accessor methods that access a particular variable.
This is because in a logic language, the parameters of rules can serve both to
pass values to the rule and return values from it. There is no distinction be-
tween either, both are done by passing logic variables as arguments to rules.
If the variable is unbound, the rule will return all values for that variable
which make the predicate hold. If the variable is bound, meaning another rule
already gave it a value, the rule simply checks if its predicate also holds for
that value. Of course, literal values can also be passed as arguments to rules.
Thus with the accessor predicate, the name of the instance variable can also
be passed as an argument so that the rule is used to check whether there is an
accessor for that variable. For example, in the following code excerpt, there
are three example logic conditions in which the parameters of the accessor
predicate (defined in section 3.3.1) are used in different ways:

accessor(?class,?selector, ?var)
accessor ([Array] ,#at:put:,?var)
accessor(?class,7selector,#name)

The first example will retrieve all accessor methods and expose their class,
methodname and accessed variable. The second example checks if the at:put:
method in the Array class is an accessor method and retrieves its accessed vari-
able. Finally, the use of the accessor predicate in the last example retrieves
all accessor methods that access a variable named name.

5 Application-specific Models in Practice

The accessors and mutators example is a valuable application-specific model
but relies on very simple coding conventions. In the development of a Smalltalk
application, there are many more conventions that can be used to expose
application-specific properties valuable for use in a pointcut definition. We il-
lustrate the use of two such conventions in the following subsections. In partic-
ular, we build a model that exposes properties based on structural conventions

3 Mind that the method name can be different from the variable name, depending
on the actual coding convention.
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used in the drag and drop framework of the user interface and the implemen-
tation of refactorings in the refactoring browser in Visualworks Smalltalk.

5.1 Drag and Drop Application-specific Model

The drag and drop facilities in VisualWorks Smalltalk are implemented by
means of a lightweight framework. This framework identifies a number of hooks
that allow a developer to implement the drag and drop behaviour for his
particular application. These hooks are:

e Drag Ok: a predicate to check wether the current widget may initiate a
drag;

Start Drag: actions which need to take place in order to start the drag
(e.g. creating a drag and drop context, ... );

Enter Drag/Exit Drag: these hooks are triggered whenever during a drag,
the mouse pointer enters/exists the boundaries of a certain widget;

Over Drag: actions which are executed when the pointer is hovering over
a widget during a drag (e.g. change the cursor);

Drop: actions which take place when an element is dropped on a widget.

A developer can add drag and drop functionality to an application by as-
sociating methods with the hooks specified above. This is done by means
of the windowSpec system of the VisualWorks user interface framework. A
windowSpec is a declarative specification of the different widgets which make
up the user interface of an application. This specification is then used by the
user interface framework to construct the actual interface. In the windowSpec,
the developer can, for each widget, associate methods with the different hooks
of the drag and drop framework. In order to access the data which is being
dragged, the origin of the drag operation, etc. these methods pass around a
DragDropManager object.

The structure of the framework described above can be used to define an
application-specific model that associates methods to an explicit drag and drop
property: i.e. for each of the hooks defined above, we define a separate pred-
icate. For example, we define the dragEnterMethod(?class,?sel,?comp)
predicate that classifies all methods that implement the ‘drag enter’ hook.
Furthermore, this predicate exposes the name of the visual component in the
interface that is dragged over. This predicate allows aspect developers to write
application-specific pointcuts that capture a drag event as the execution of
such a method:

reception(?jp,?selector,?args),
dragEnterMethod(7class, ?selector, 7component)
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Furthermore, we also define the draggedObject (?dragdropmanager, 7object)
and dragSource(?dragdropmanager,?source) predicates that reify the ob-
ject being dragged and the source component from where it is being dragged re-
spectively. Both predicates extract this information from the DragDropManager
instance that is being passed as an argument to the drag and drop meth-
ods. We can now further extend the pointcut such that it only captures drag
events that originate from a particular source or drags of a particular object.
For example, we complete the above pointcut with the following conditions to
capture drags originating from a FigureManager (lines 2-3) and dragging a
Line object (lines 4-5). The first line merely extracts the only argument being
passed to the ‘drag enter’ method, which is the DragDropManager object.

equals(?args,<?dragdropmanager>) ,
dragSource (?dragdropmanager, ?source) ,
instance0f (?source, [FigureManager]),
draggedObject (?dragdropmanager, 7object),
instanceOf (7object,Line)

This pointcut is particularly useful for the definition of an aspect that renders
an icon in our user interface depending on the element that is being dragged.
Without aspects, we would need to implement the visualisation of such an icon
in the ‘drag enter’ method of every application model in our user interface, re-
sulting in duplicated and scattered code. Furthermore, the application-specific
model now also allows us to decouple the pointcut definition from the actual
structural conventions used in the user interface framework and implement
them in terms of the explicit application-specific properties associated to a
user interface.

5.2 Refactorings

Refactorings are behaviour-preserving program transformations which can be
used to improve the structure of the application [18]. A number of these refac-
torings can be automated up to a certain degree, which has resulted in the de-
velopment of tool support for performing refactorings directly from the IDE. In
VisualWorks, such tool support is integrated with the Refactoring Browser.

The Refactoring Browser makes use of a framework implementing these
refactorings. In this framework, all refactorings are represented by a sub-
class of the abstract Refactoring class. Each subclass must implement a
preconditions method, which specifies the preconditions that the source code
to be refactored needs to adhere to in order to perform the refactoring, and a
transform method, which performs the actual program transformation.

As an example of an aspect based on the refactoring framework, consider a
software engineering tool (for instance a versioning system) which, each time
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a refactoring is initiated, needs to be notified of the program entities which
are possibly affected by the refactoring. Such information is hard to retrieve
from the source code of the framework. However, by creating an application-
specific model for the refactoring framework, we can explicitly document this
additional information. The following pointcut retrieves all affected entities
for the instantiation of a refactoring:

reception(?joinpoint,7message, 7arguments),
inObject(?joinpoint,?receiver),
refactoringInstantiation(?receiver,7message,7arguments,?affectedentities)

The first two lines of the pointcut select all message receptions and their re-
ceiver; the last line restricts these message receptions to the ones which instan-
tiate a refactoring. Also, the pointcut binds all affected entities, depending on
the input and the type of the refactoring to the variable 7affectedentities.

The refactoringInstantiation rule is defined as follows:

refactoringInstantiation(?refactoring, ?message,?args,?affectedentity) if
refactoring(?refactoring),
methodWithNameInClass (?method, ?message, 7refactoring),
instanceCreationMethod (?method),
refactoringAffectedEntity(?refactoring,?refactoringclass,?args,7affectedentity)

The first line of this rule checks wether the receiver of the message is a refac-
toring (i.e. wether it is a subclass of the class Refactoring). The second and
third line implement the selection of those messages (and their arguments)
which create an instance of the refactoring. Finally, the last line calculates,
based on the arguments of the message, the program entities which can be
affected by the refactoring.

For each refactoring, the affected entities are explicitly documented by logic
rules.

refactoringAffectedEntity(?refactoring, [PushUpMethodRefactoring],?input,?affectedentity) if
originalClassOfPushUpMethod (7input,?affectedentity)

refactoringAffectedEntity(?refactoring, [PushUpMethodRefactoring],?input,?affectedentity) if
originalClassOfPushUpMethod(7input,?class),
superclass0f (?affectedentity,?class) .

The above rules reflect this knowledge for the Method Push Up-refactoring.
The first line of both rules extracts the class of the method which will be
pushed up from the arguments of the message reception. For this refactoring,
both the class from which the refactoring is initiated (the first rule), as well
as its superclass are affected (the second rule).
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6 Related and Future Work

In previous work [12], we have introduced the technique of model-based point-
cuts that allows to define pointcuts in a similar way as the application-specific
pointcuts presented in this paper. In fact, the approach presented in this pa-
per is a first step towards an improved integration of model-based pointcuts
and logic-based pointcut languages [7]. In essence, we further extended the
technique of model-based pointcuts to exploit the full power of the logic pro-
gramming language for the definition of application-specific properties. In [12],
we merely extended the pointcut language with a single predicate that allows
to query a conceptual model of the program, implemented using intensional
views [20]. In this paper, the model consists of full logic predicates, resulting in
an improved integration of the model and the pointcuts. In contrast, in [12], we
have shown how model-based pointcuts are less fragile with respect to changes
in the base program primarily due to tool support that enforces developers to
adhere to the correct conventions such that the model remains valid. In this
paper, we have focused on the adequate features of a logic language for the
creation and extension of the model and we presented an improved integration
of the model with the pointcut mechanism itself. We are currently working
on how to reconcile the support for the detection of the fragile pointcut prob-
lem with the full power of the application-specific models presented in this
paper. Furthermore, there are a number of related approaches or techniques
that work towards the same goal:

6.1 Ezpressive Pointcut Languages

The work described in this paper further extends our work on the expressive
pointcut language CARMA [7] through which we have previously highlighted
the advantages of logic languages, such as user-defined pointcut predicates.
Some other recent experimental aspect-oriented languages also propose more
advanced pointcut languages. The Alpha aspect language, for example, also
uses a logic programming language for the specification of pointcuts and en-
hances the expressiveness by providing diverse automatically-derived models
of the program. These models and their associated predicates can, for exam-
ple, reason over the entire state and execution history [21]. Similar to our
work [7], Ostermann and Mezini use logic rules to write new pointcut predi-
cates. The use of logic rules for writing model documentation was not consid-
ered. EAOP [22] and JAsCo [23] offer event-based or stateful pointcuts that
allow to express the activation of an aspect based on a sequence of events
during the program’s execution.
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6.2 Annotations

An alternative approach to application-specific pointcuts over application-
specific models is to define pointcuts in terms of explicit annotations in the
code [24,25]. Annotations classify source-code entities and thereby make ex-
plicit additional semantics that would otherwise be expressed through implicit
programming conventions. This approach, however, does not benefit from the
expressive power that is provided by the logic metalanguage.

6.3 Design Rules and XPI

Yet another alternative approach is to explicitly include the pointcut descrip-
tions in the design and implementation of the software and to require devel-
opers to adhere to this design. Sullivan et al. [26] propose such an approach
by interfacing base code and aspect code through design rules. These rules
are documented in interface specifications that base code designers are con-
strained to ‘implement’, and that aspect designers are licensed to depend upon.
Once the interfaces are defined (and respected), aspect and base code become
symmetrically oblivious to each others’ design decisions. More recently, the
interfaces that are defined by the design rules can be implemented as Fz-
plicit Pointcut Interfaces (XPI's) using AspectJ [27]. Using XPIs, pointcuts
are declared globally and some constraints can be verified on these point-
cuts using other pointcuts. Our approach is different in the fact that we keep
the pointcut description in the aspect, leaving more flexibility to the aspect
developer. While XPIs fix all pointcut interfaces beforehand, our application-
specific model only fixes the specific properties available for use in pointcut
definitions.

7 Conclusion

AspectSOUL is an extension of the AspectS language framework with the
open-ended logic-based pointcut language of CARMA. The resulting inte-
grated aspect language allows developers to extend the pointcut language with
an application-specific model. Such an application-specific model defines new
pointcut predicates that reify implicit structural implementation conventions
as explicit properties available for use in pointcut definitions. These model-
based pointcuts are decoupled from the intricate structural implementation
details of the base program, effectively reducing their complexity. The defini-
tion of the application-specific model confines all these technical details and
serves as a contract between the base program developers and the aspect de-
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velopers. Finally, the logic paradigm offers adequate language features for the
definition and extension of the application-specific model.
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