Skip to main content

Model-Based Reasoning for Self-Repair of Autonomous Mobile Robots

  • Chapter
Model-Based Reasoning in Science, Technology, and Medicine

Part of the book series: Studies in Computational Intelligence ((SCI,volume 64))

Summary. Retaining functionality of a mobile robot in the presence of faults is of particular interest in autonomous robotics. From our experiences in robotics we know that hardware is one of the weak points in mobile robots. In this paper we present the foundations of a system that automatically monitors the driving device of a mobile robot. In case of a detected fault, e.g., a broken motor, the system automatically re-configures the robot in order to allow to reach a certain position. The described system is based on a generalized model of the motion hardware. The path-planner has only to change its behavior in case of a serious damage. The high-level control system remains the same. In the paper we present the model and the foundations of the diagnosis and re-configuration system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carlson, J., Murphy, R.: How UGVs physically fail in the field. IEEE Transac-tions on Robotics 21 (June 2005) 423-437

    Article  Google Scholar 

  2. Steinbauer, G., Faschinger, M., Fraser, G., Mühlenfeld, A., Richter, S., Wöber, G., Wolf, J.: Mostly Harmless Team Description. In: Proceedings of the International RoboCup Symposium. (2003)

    Google Scholar 

  3. Murphy, R.: Introduction to AI Robotics. MIT Press (2002)

    Google Scholar 

  4. Siegwart, R., Nourbakhsh, I.: Introduction to Autonomous Mobile Robots. MIT Press (2004)

    Google Scholar 

  5. Latombe, J.C.: Robot Motion Planning. Eight reprint edn. Kluwer Academic Publisher (2004)

    Google Scholar 

  6. Choset, H., Lynch, K., Hutchison, S., Kantor, G., Burgard, W., Kavarki, L., Thrun, S.: Principles of Robot Motion. Theory, Algorithms and Implementa-tions. MIT Press (2004)

    Google Scholar 

  7. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32 (1987) 57-95

    Article  MATH  MathSciNet  Google Scholar 

  8. Greiner, R., Smith, B., Wilkerson, R.: A correction to the algorithm in Reiter’s theory of diagnosis. Artificial Intelligence 41 (1989) 79-88

    Article  MATH  MathSciNet  Google Scholar 

  9. Friedrich, G., Gottlob, G., Nejdl, W.: Hypothesis classification, abductive diag-nosis and therapy. In: Proceedings of the International Workshop on Expert Systems in Engineering, Vienna, Springer Verlag, Lecture Notes in Artificial Intelligence, Vo. 462 (1990)

    Google Scholar 

  10. Console, L., Dupré, D., Torasso, P.: On the relationship between abduction and deduction. Journal of Logic and Computation 1 (1991) 661-690

    Article  MATH  MathSciNet  Google Scholar 

  11. Struss, P., Dressler, O.: Physical negation - Integrating fault models into the general diagnostic engine. In: International Joint Conference on Artificial Intelligence (IJCAI), Detroit (1989) 1318-1323

    Google Scholar 

  12. Friedrich, G., Gottlob, G., Nejdl, W.: Physical impossibility instead of fault models. In: National Conference on Artificial Intelligence (AAAI), Boston (1990) 331-336. Also appears in Readings in Model-Based Diagnosis (Morgan Kaufmann, 1992).

    Google Scholar 

  13. Hamscher, W., Console, L., de Kleer, J., eds.: Readings in Model-Based Diag-nosis. Morgan Kaufmann Publishers, Inc. (1992)

    Google Scholar 

  14. Hofbaur, M., Williams, B.: Mode estimation of probabilistic hybrid systems. In Tomlin, C., Greenstreet, M., eds.: Hybrid Systems: Computation and Control, HSCC 2002. Volume 2289 of Lecture Notes in Computer Science. Springer Verlag (2002) 253-266

    Google Scholar 

  15. Hofbaur, M.: Hybrid Estimation of Complex Systems. Volume 319 of Lecture Notes in Control and Information Sciences. Springer Verlag (2005)

    Google Scholar 

  16. Hofbaur, M., Wotawa, F.: A causal analysis method for concurrent hybrid automata. In: Proceedings of the 21st National Conference on Artificial Intelli-gence (AAAI-06). (2006) 840-846

    Google Scholar 

  17. Li, X., Bar-Shalom, Y.: Multiple-model estimation with variable structure. In: IEEE Trans. Automatic Control. Volume 41. (1996) 478-494

    Google Scholar 

  18. Köb, J.: Modellbasierte Regelung eines Roboterfahrwerkes. Master’s thesis, Institute for Automation and Control, Graz University of Technology (2005)

    Google Scholar 

  19. Williams et al., B.: Remote agent: To boldly go where no AI system has gone before. Artificial Intelligence 103 (1998) 5-48

    Google Scholar 

  20. Dearden, R., Clancy, D.: Particle filters for real-time fault detection in planetary rovers. In: Proceedings of the Thirteenth International Workshop on Principles of Diagnosis. (2002) 1-6

    Google Scholar 

  21. Verma, V., Gordon, G., Simmons, R., Thrun, S.: Real-time fault diagnosis. IEEE Robotics & Automation Magazine 11 (2004) 56-66

    Article  Google Scholar 

  22. Steinbauer, G., Wotawa, F.: Detecting and locating faults in the control soft-ware of autonomous mobile robots. In: 19th International Joint Conference on Artificial Intelligence (IJCAI-05), Edinburgh, UK (2005)

    Google Scholar 

  23. Stumptner, M., Wotawa, F.: Model-based reconfiguration. In: Proceedings Arti-ficial Intelligence in Design, Lisbon, Portugal (1998)

    Google Scholar 

  24. Anglano, C., Montani, S.: Achieving self-healing in autonomic software systems: A case-based approach. In Czap, H., Unland, R., Branki, C., Tianfield, H., eds.: Self-Organization and Autonomic Informatics (I). Volume 135 of Frontiers in Artificial Intelligence and Applications. IOS Press (2005) 267-281

    Google Scholar 

  25. Higuchi, T., Liu, Y., Yao, X., eds.: Evolvable Hardware. Springer (2006)

    Google Scholar 

  26. Sztipanovits, J., Karsai, G.: A model-based approach to self-adaptive software. IEEE Intelligent Systems 14 (1999) 46-53

    Article  Google Scholar 

  27. Friedrich, G., Stumptner, M., Wotawa, F.: Model-based diagnosis of hardware designs. Artificial Intelligence 111 (1999) 3-39

    Article  MATH  MathSciNet  Google Scholar 

  28. Peischl, B., Wotawa, F.: Automated source level error localization in hardware designs. IEEE Design & Test of Computers 23 (2005) 8-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hofbaur, M., KÖb, J., Steinbauer, G., Wotawa, F. (2007). Model-Based Reasoning for Self-Repair of Autonomous Mobile Robots. In: Magnani, L., Li, P. (eds) Model-Based Reasoning in Science, Technology, and Medicine. Studies in Computational Intelligence, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71986-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71986-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71985-4

  • Online ISBN: 978-3-540-71986-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics