Abstract
The theory of abstract algebraic logic aims at drawing a strong bridge between logic and universal algebra, namely by generalizing the well known connection between classical propositional logic and Boolean algebras. Despite of its successfulness, the current scope of application of the theory is rather limited. Namely, logics with a many-sorted language simply fall out from its scope. Herein, we propose a way to extend the existing theory in order to deal also with many-sorted logics, by capitalizing on the theory of many-sorted equational logic. Besides showing that a number of relevant concepts and results extend to this generalized setting, we also analyze in detail the examples of first-order logic and the paraconsistent logic \(\mathcal{C}_1\) of da Costa.
This work was partially supported by FCT and FEDER through POCI, namely via the QuantLog POCI/MAT/55796/2004 Project of CLC and the recent KLog initiative of SQIG-IT. The second author was also supported by FCT under the PhD grant SFRH/BD/18345/2004/SV7T and a PGEI research grant from Fundaçäo Calouste Gulbenkian.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blok, W., Pigozzi, D.: Algebraizable logics. Memoirs of the AMS 77(396) (1989)
Font, J., Jansana, R., Pigozzi, D.: A survey of abstract algebraic logic. Studia Logica 74(1–2), 13–97 (2003)
Mossakowski, T., Tarlecki, A., Pawłowski, W.: Combining and representing logical systems using model-theoretic parchments. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 349–364. Springer, Heidelberg (1998)
Sernadas, A., Sernadas, C., Caleiro, C.: Fibring of logics as a categorial construction. Journal of Logic and Computation 9(2), 149–179 (1999)
RoÅŸu, G.: Hidden Logic. PhD thesis, University of California at San Diego (2000)
Blok, W., Pigozzi, D.: Algebraic semantics for universal Horn logic without equality. In: Universal algebra and quasigroup theory, Lect. Conf., vol. 19, Jadwisin/Pol., pp. 1–56 (1992)
da Costa, N.: On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic 15, 497–510 (1974)
Mortensen, C.: Every quotient algebra for \({\cal C}_1\) is trivial. Notre Dame Journal of Formal Logic 21, 694–700 (1980)
Lewin, R., Mikenberg, I., Schwarze, M.: \({\cal C}_1\) is not algebraizable. Notre Dame Journal of Formal Logic 32(4), 609–611 (1991)
Wójcicki, R.: Theory of Logical Calculi. Synthese Library. Kluwer Academic Publishers, Dordrecht (1988)
Goguen, J., Malcolm, G.: A hidden agenda. Theoretical Computer Science 245(1), 55–101 (2000)
Czelakowski, J.: Protoalgebraic logics. Trends in Logic—Studia Logica Library, vol. 10. Kluwer Academic Publishers, Dordrecht (2001)
Henkin, L., Monk, J.D., Tarski, A.: Cylindric algebras. Studies in Logic. North-Holland, Amsterdam (1971)
Carnielli, W.A., Marcos, J.: A taxonomy of C-systems. In: Carnielli, W.A., Coniglio, M.E., D’Ottaviano, I.M.L. (eds.) Paraconsistency: The logical way to the inconsistent. Lecture Notes in Pure and Applied Mathematics, vol. 228, pp. 1–94 (2002)
da Costa, N.: Opérations non monotones dans les treillis. Comptes Rendus de l’Academie de Sciences de Paris, A423–A429 (1966)
Carnielli, W.A., de Alcantara, L.P.: Paraconsistent algebras. Studia Logica, 79–88 (1984)
Caleiro, C., Carnielli, W., Coniglio, M., Sernadas, A., Sernadas, C.: Fibring non-truth-functional logics: Completeness preservation. Journal of Logic, Language and Information 12(2), 183–211 (2003)
Herrmann, B.: Characterizing equivalential and algebraizable logics by the Leibniz operator. Studia Logica, 419–436 (1996)
Martins, M.: Behavioral reasoning in generalized hidden logics. Phd Thesis. Faculdade de Ciências, University of Lisbon (2004)
Mateus, P., Sernadas, A.: Weakly complete axiomatization of exogenous quantum propositional logic. Information and Computation 204(5), 771–794 (2006), ArXiv math.LO/0503453
Voutsadakis, G.: Categorical abstract algebraic logic: algebraizable institutions. Applied Categorical Structures 10(6), 531–568 (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Caleiro, C., Gonçalves, R. (2007). On the Algebraization of Many-Sorted Logics. In: Fiadeiro, J.L., Schobbens, PY. (eds) Recent Trends in Algebraic Development Techniques. WADT 2006. Lecture Notes in Computer Science, vol 4409. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71998-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-71998-4_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71997-7
Online ISBN: 978-3-540-71998-4
eBook Packages: Computer ScienceComputer Science (R0)