Abstract
We propose to extend the algebraic-coalgebraic specification language CoCasl by full coalgebraic modal logic based on predicate liftings for functors. This logic is more general than the modal logic previously used in CoCasl and supports the specification of a variety of modal logics, such as graded modal logic, majority logic, and probabilistic modal logic. CoCasl thus becomes a modern modal language that covers a wide range of Kripke and non-Kripke semantics of modal logics via the coalgebraic interpretation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bidoit, M., Mosses, P.D. (eds.): CASL User Manual. LNCS, vol. 2900. Springer, Heidelberg (2004)
Chellas, B.: Modal Logic. Cambridge (1980)
Cîrstea, C., Pattinson, D.: Modular construction of modal logics. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 258–275. Springer, Heidelberg (2004)
D’Agostino, G., Visser, A.: Finality regained: A coalgebraic study of Scott-sets and multisets. Arch. Math. Logic 41, 267–298 (2002)
Hansen, H.H., Kupke, C.: A coalgebraic perspective on monotone modal logic. In: Coalgebraic Methods in Computer Science, CMCS 04. ENTCS, vol. 106, pp. 121–143. Elsevier, Amsterdam (2004)
Hausmann, D., Mossakowski, T., Schröder, L.: A coalgebraic approach to the semantics of the ambient calculus. Theoret. Comput. Sci. 366, 121–143 (2006)
Heifetz, A., Mongin, P.: Probabilistic logic for type spaces. Games and Economic Behavior 35, 31–53 (2001)
Jacobs, B.: Towards a duality result in the modal logic of coalgebras. In: Coalgebraic Methods in Computer Science, CMCS 00. ENTCS, vol. 33, Elsevier, Amsterdam (2000)
Kupke, C., Kurz, A., Pattinson, D.: Ultrafilter extensions for coalgebras. In: Fiadeiro, J.L., Harman, N., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 263–277. Springer, Heidelberg (2005)
Kurz, A.: Specifying coalgebras with modal logic. Theoret. Comput. Sci. 260, 119–138 (2001)
Kurz, A.: Logics admitting final semantics. In: Nielsen, M., Engberg, U. (eds.) ETAPS 2002 and FOSSACS 2002. LNCS, vol. 2303, pp. 238–249. Springer, Heidelberg (2002)
Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inform. Comput. 94, 1–28 (1991)
Mossakowski, T.: Heterogeneous specification and the heterogeneous tool set. Habilitation thesis, University of Bremen (2004)
Mossakowski, T., Schröder, L., Roggenbach, M., Reichel, H.: Algebraic-co-algebraic specification in CoCASL. J. Logic Algebraic Programming 67, 146–197 (2006)
Mosses, P.D. (ed.): CASL Reference Manual. LNCS, vol. 2960. Springer, Heidelberg (2004)
Pacuit, E., Salame, S.: Majority logic. In: Principles of Knowledge Representation and Reasoning, KR 04, pp. 598–604. AAAI Press, Menlo Park (2004)
Pattinson, D.: Semantical principles in the modal logic of coalgebras. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 514–526. Springer, Heidelberg (2001)
Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction. Notre Dame J. Formal Logic 45, 19–33 (2004)
Peyton-Jones, S.: Haskell 98 Language and Libraries — The Revised Report (Also: J. Funct. Programming 13 (2003)). Cambridge (2003)
Rößiger, M.: Coalgebras and modal logic. In: Coalgebraic Methods in Computer Science, CMCS 00. ENTCS, vol. 33, Elsevier, Amsterdam (2000)
Rutten, J.: Universal coalgebra: A theory of systems. Theoret. Comput. Sci. 249, 3–80 (2000)
Schröder, L.: Expressivity of coalgebraic modal logic: the limits and beyond (Extended version to appear in: Theoret. Comput. Sci.). In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 440–454. Springer, Heidelberg (2005)
Schröder, L.: A finite model construction for coalgebraic modal logic (Extended version to appear in: J. Logic Algebraic Programming). In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006 and ETAPS 2006. LNCS, vol. 3921, pp. 157–171. Springer, Heidelberg (2006)
Schröder, L., Mossakowski, T., Lüth, C.: Type class polymorphism in an institutional framework. In: Fiadeiro, J.L., Mosses, P.D., Orejas, F. (eds.) WADT 2004. LNCS, vol. 3423, pp. 234–248. Springer, Heidelberg (2005)
Schröder, L., Mossakowski, T., Maeder, C.: HasCASL – Integrated functional specification and programming. Language summary(2003), Available at, http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/HasCASL
Schröder, L., Pattinson, D.: PSPACE reasoning for rank-1 modal logics. In: Logic in Computer Science, LICS 06, pp. 231–240. IEEE Computer Society Press, Los Alamitos (2006)
Thomsen, B.: A theory of higher order communicating systems. Inform. and Comput. 116, 38–57 (1995)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Schröder, L., Mossakowski, T. (2007). Coalgebraic Modal Logic in CoCasl . In: Fiadeiro, J.L., Schobbens, PY. (eds) Recent Trends in Algebraic Development Techniques. WADT 2006. Lecture Notes in Computer Science, vol 4409. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71998-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-71998-4_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71997-7
Online ISBN: 978-3-540-71998-4
eBook Packages: Computer ScienceComputer Science (R0)