Skip to main content

Comparative Pathway Prediction Via Unified Graph Modeling of Genomic Structure Information

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4463))

Included in the following conference series:

  • 853 Accesses

Abstract

Genomic information other than sequence similarity is important for comparative analysis based prediction of biological pathways. There is evidence that structure information like protein-DNA interactions and operons is very useful in improving the pathway prediction accuracy. This paper introduces a graph model that can unify the protein-DNA interaction and operon information as well as homologous relationships between involved genes. Under this model, pathway prediction corresponds to finding the maximum independent set in the model graph, which is solved efficiently via non-trivial tree decomposition-based techniques. The developed algorithm is evaluated based on the prediction of 30 pathways in E. coli K12 using those in B. subtilis 168 as templates. The overall accuracy of the new method outperforms those based solely on sequence similarity or using different categories of structure information separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altschul, S.F., et al.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  Google Scholar 

  2. Bodlaender, H.L.: Classes of graphs with bounded tree-width. Tech. Rep. RUU-CS-86-22, Dept. of Computer Science, Utrecht University, the Netherlands (1986)

    Google Scholar 

  3. Bodlaender, H.L.: Dynamic programming algorithms on graphs with bounded tree-width. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–119. Springer, Heidelberg (1988)

    Google Scholar 

  4. Bodlaender, H.L.: Discovering Treewidth. In: Vojtáš, P., et al. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005)

    Google Scholar 

  5. Gutierrez-Rios, R.M., et al.: Regulatory network of Escherichia coli: consistency between literature knowledge and microarray profiles. Genome Res. 13(11), 2435–2443 (2003)

    Article  Google Scholar 

  6. Hicks, I.V., Koster, A.M.C.A., Kolotoglu, E.: Branch and tree decomposition techniques for discrete optimization. In: Tutorials in Operations Research: INFORMS – New Orleans (2005)

    Google Scholar 

  7. Kanehisa, M., et al.: From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34, D354–357 (2006)

    Article  Google Scholar 

  8. Makita, Y., et al.: DBTBS: database of transcriptional regulation in Bacillus subtilis and its contribution to comparative genomics. Nucleic Acids Res. 32, D75–77 (2004)

    Article  Google Scholar 

  9. Mao, F., et al.: Mapping of orthologous genes in the context of biological pathways: An application of integer programming. PNAS 108(1), 129–134 (2006)

    Article  Google Scholar 

  10. Mount, D.W.: Bioinformatics: sequence and genome analysis, pp. 516–517. Cold Spring Harbor Lab. Press, Cold Spring Harbor (2000)

    Google Scholar 

  11. Nielsen, R.: Comparative genomics: Difference of expression. Nature 440, 161–161 (2006)

    Article  Google Scholar 

  12. Price, M.N., et al.: A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Res. 33, 880–892 (2005)

    Article  Google Scholar 

  13. Salgado, H., Gama-Castro, S., Peralta-Gil, M., et al.: RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res. 34, D394–D397 (2006)

    Article  Google Scholar 

  14. Reed, J.L., et al.: Towards multidimensional genome annotation. Nature Reviews Genetics 7, 130–141 (2006)

    Article  Google Scholar 

  15. Robertson, N., Seymour, P.D.: Graph minors ii. algorithmic aspects of tree width. J. Algorithms 7, 309–322 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Romero, P., et al.: Computational prediction of human metabolic pathways from the complete human genome. Genome Biology 6, R2 (2004)

    Google Scholar 

  17. Su, Z., et al.: Computational Inference of Regulatory Pathways in Microbes: an Application to Phosphorus Assimilation Pathways in Synechococcus sp. WH8102. Genome Informatics 14, 3–13 (2003)

    Google Scholar 

  18. Tatusov, R.L., Koonin, E.V., Lipman, D.J.: A Genomic Perspective on Protein Families. Science 278(5338), 631–637 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, J., Che, D., Cai, L. (2007). Comparative Pathway Prediction Via Unified Graph Modeling of Genomic Structure Information. In: Măndoiu, I., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2007. Lecture Notes in Computer Science(), vol 4463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72031-7_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72031-7_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72030-0

  • Online ISBN: 978-3-540-72031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics