
Execution Support of High Performance
Heterogeneous Component-Based Applications

on the Grid�

Massimo Coppola1,2, Marco Danelutto2, Nicola Tonellotto1,3,
Marco Vanneschi2, and Corrado Zoccolo4

1 Information Science and Technologies Institute, National Research Council
Via G. Moruzzi 1, 56124 Pisa, Italy

2 Computer Science Department, University of Pisa
Largo B. Pontecorvo 3, 56127 Pisa, Italy

3 Information Engineering Department, University of Pisa
Via G. Caruso 16, 56122 Pisa, Italy
4 IAC Search & Media Italia S.r.l.
Corso Italia 58, 56100 Pisa, Italy

Abstract. Application deployment is becoming an increasingly hard
task, as complex, component-based Grid applications have to be de-
ployed on heterogeneous and dynamic Grids, interfacing to several dif-
ferent component frameworks and Grid middlewares. We describe the
architecture of the Grid Execution Agent (GEA), the deployment and
resource brokering tool of the Grid.it project. GEA has been designed
to ease the deployment of complex Grid applications written in a high-
level, structured way. To easily handle different component models over
heterogeneous Grid resources, the GEA design exploits multiple levels of
abstraction. Our approach allows consistent translation of the high-level
requirements from heterogeneous, multi-component applications, to low-
level operations over different middlewares. GEA architecture provides a
unified interface with services to locate resources, devise initial mapping,
and instantiate applications, and it is extensible to new component mod-
els. It supports dynamically reconfiguring, self-adapting applications by
allowing execution-time resource allocation changes.

1 Introduction

The vision of Computational Grids set forth at the end of last century is becom-
ing reality, at least from the point of view of the raw capability of coordinating
Grid resources into executing applications. However, standardization of middle-
ware and practical and efficient programming models for the Grid are still to be
� This work has been supported by: the Italian MIUR FIRB Grid.it project, No.

RBNE01KNFP, on High-performance Grid platforms and tools, and the European
CoreGRID NoE (European Research Network on Foundations, Software Infrastruc-
tures and Applications for Large Scale, Distributed, GRID and Peer-to-Peer Tech-
nologies, contract no. IST-2002-004265).

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 171–185, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



172 M. Coppola et al.

achieved. Thus, the advantages of large Grid computing platforms for several
tasks, including collaborative engineering, data exploration, high-throughput
computing, and of course distributed super-computing, are still hindered by the
difficulty in writing truly portable applications able to exploit dynamic, hetero-
geneous platforms, as well as to integrate legacy code.

While portals and graphical interfaces allow to manage simple applications
and to expose legacy ones as publicly available services, more complex applica-
tions designed to benefit from the nature of the Grid platforms still have to be
developed exploiting direct interaction with Grid middleware.

Beside the efforts spent in developing middleware systems, the tools provided
to deploy and manage the elements of the application do not offer yet a high level
of abstraction. Nowadays, the vast majority of applications exploiting Grids are
structured as bags of independent jobs, or workflows with simple, file-transfer
based interactions.

In the future, complex, multi-disciplinary applications will have to provide an
agreed QoS with respect to their fundamental characteristics, e.g. performance,
fault tolerance, security. In order to support these requirements more complex
and flexible programming models are needed, and applications will have to be
able to dynamically alter the set of resources allocated during the execution,
and to support multiple interaction protocols with resource management mid-
dlewares.

There is general consensus on the adoption of the software component abstrac-
tion to simplify the task of programming high performance and distributed ap-
plications, especially on Grids. Early examples of this trend are the CCA [1] and
GridCCM [2] approaches. Large, international research projects on Grid-aware
component models, like CoreGRID and GridCOMP, are a more recent outcome
of this trend.

Within the Grid.it project we developed the ASSIST [3] structured parallel
programming environment to produce software components, and we addressed in
the runtime tools the problem of composite application deployment on heteroge-
neous clusters and Grid resources. The ASSIST environment also supports mixing
different kinds of components in the same application (Grid.it components, Web
services, CCM). These abilities generate the need to integrate different protocols
in the run-time for communications, resource query and deployment activities.

In this work we describe the architecture of the Grid Execution Agent (GEA),
which provides resource brokering and management functionalities for the AS-
SIST environment. GEA insulates the run-time support of components from the
actual Grid middleware. Preliminary versions of GEA have already been intro-
duced in previous works [4,5].

Our main contribution is the design of a Grid application execution framework
where a very high-level, abstract description of applications, which is based on
software components, is translated into deploy actions using multiple levels of
interpretation. The proposed solution exploits plug-in classes to encode the pe-
culiarities, at the different levels of interpretation, of deployment protocols w.r.t.
component frameworks, computing processes and supporting middlewares.



High Performance Heterogeneous Component-Based Applications 173

The multi-level design of GEA allows easy and seamless configuration of re-
sources and component infrastructures, generally done at run-time, in order
(1) to host components from different frameworks, (2) to host components in-
teracting by means of different middlewares, supporting multi-framework in-
tegration, (3) to add support for user-transparent deployment of applications
on different Grid-middlewares. GEA is thus customizable to support different
high-level abstractions interacting with different existing middlewares, support-
ing HPC Grid applications in large-scale Virtual Organizations, and providing
the functionalities of an Invisible Grid [3].

The rest of this paper is structured as follows. In Sect. 2 we give a general
definition of the Deployment process, with special regard to hierarchical and
component-based applications. In Sect. 3 we discuss related work w.r.t. Grid
deployment. In Sect. 4 we describe the ASSIST programming environment and
the Grid.it component model. In Sect. 5 we discuss the approach to applica-
tion and requirement analysis and translation adopted by GEA, and the overall
architecture of the deployment system that results. In Sect. 6 we sum up our
contributions and illustrate future work directions.

2 Component Deployment in a Multi-middleware
Heterogenous Environment

Our aim is quite general: we want to be able to deploy applications made up
of distributed and parallel components, which can possibly belong to different
component frameworks, over a set of Grid resources that span a Virtual Or-
ganization, possibly encompassing resources managed by different middleware
systems.

According to our approach, the input of the deployment process includes the
application structure, a set of resource requirements (fixed constraints on the
execution of a single process or components), a set of QoS models (analytical
expressions of Quality of Service, relating it to the execution parameters of a
component) and a set of contracts (constraints that the free variables in the ap-
plication or component model shall satisfy). The initial application deployment
will usually involve assembling an overall application QoS model, to balance re-
source allocation, and decomposing global application contracts into contracts
suitable for the single components and modules. Merging contracts and require-
ments for each component with static knowledge about its implementation, we
obtain the information for its initial deployment.

We have to map a non trivial amount of high level information, concerning
application structure, deployment requirements and user-expected QoS into a
large amount of low-level actions about resource reservation and configuration,
process/job mapping and scheduling. Moreover, at run-time more sophisticate
models can be used, leading to dynamic changes to the initial deployment choices.

The general problem almost naturally breaks down into levels corresponding
to levels of abstraction in the application structure (see Fig. 1).



174 M. Coppola et al.

Application

ComponentComp�
Contract

3rocess

App�
Contract

8nIolGinJ�oI�HiHUaUcKical�CoPponHntV

S/A
Template

Fig. 1. Abstraction layers for component-based applications execution

Application. An application is a hierarchical composition of components inter-
acting through communication patterns. We need to run it on a Grid while
enforcing a user-agreed performance contract, that is a user-dependent spec-
ification of the expected behavior of the application at runtime.

Component. The hierarchical composition of components can be unfolded
until the whole application is “exploded” to a complex graph of atomic com-
ponents. We need a standardized way to convey information about the struc-
ture and characteristics of every component, as well as models of the runtime
behavior of the components and their interactions. Such information is ex-
ploited to characterize every component with its own contract, in order to
select Grid resources that will host the component, deploy it and control its
behavior at runtime.

Process. Each component is made up of several processes (including functional
processes and support services). Every process will need its own mapping
and scheduling over concrete resources. A Service Level Agreement (SLA)
template has to be derived from the component contract for each implemen-
tation process, in order to negotiate an agreement with the Grid resources
and to globally enforce the QoS required by the user. Moreover, to deploy a
component, its processes need to be properly configured to interact.

Middleware. For each single process or job, the Grid middleware used to access
the selected resource (e.g. Globus) will generally need a specific set of actions
in order to successfully deploy the process.



High Performance Heterogeneous Component-Based Applications 175

The deployment activities at each abstraction layer below the first one (com-
ponent, process, middleware) can be arranged in a workflow, that encodes their
dependencies (a partial order over activities), the parameters and the configura-
tion information that each activity needs to transmit to the depending ones.

If we consider each deployment level as the satisfaction of a dependency graph
of actions, the overall application deployment is actually the product of the three
dependency graphs over components, over processes within them, and over Grid
middlewares exploited to access the resources.

To avoid generating large optimization problems, whose solutions would be
anyway approximate, we chose not to unroll and flatten the whole application
deployment to a single dependency graph of elementary activities.

Our approach instead exploits the hierarchical structure of the application to
split the deployment problem into smaller and smaller subproblems. This way
we can more easily devise deployment heuristics to reach good initial resource
mappings, and it is possible to reuse the same deployment system to perform
application adaptation, by deploying locally optimized additional entities (com-
ponents, processes).

3 Related Work

First-generation deployment mechanisms based on Globus [6] can deploy only
sequential jobs and “bag of tasks”, that is parallel “uniform” (SPMD) jobs to be
executed by homogeneous clusters. Condor-G [7] is a typical example of this kind
of approach, as deployment requirements are specified in detail at a very low level
of abstraction. Deployment is defined by elementary actions which depend both
on the application process structure, and on the middleware. Another obstacle to
the aggregation of heterogeneous Grid resources is that Grid middlewares provide
in general different APIs, functionalities and servers for resource location, access
and management.

These are clearly fundamental issues, which we must solve in order to en-
hance support for component-based applications, applications with non-trivial
structure, e.g. exploiting different frameworks and middlewares, and dynam-
ically adaptive applications, which need execution-time reconfiguration and
(re)deployment. A number of systems are currently being developed for the
Grid, which aim at solving the mentioned issues and supporting high-level
programming languages and environments.

Adage [8] is a tool for Grid deployment whose approach is based on the transla-
tion of different kinds of application descriptions, both flat message passing and
component-oriented ones, into a common XML format called GADe (Generic
Application Description). GADe represents an application as a graph of com-
puting entities, each one made up of processes, and each process containing a
set of code entities (components and DLLs). Currently CCM, and MPI trans-
lators have been developed which feed with GADe description the deployment
planning and execution modules of Adage. GridCCM and CCA translators are
in development.



176 M. Coppola et al.

Grid middleware interface in Adage is based on the GAT toolkit [9]. Adage
and GEA share a common approach [10] in adopting a core deployment engine
independent of application and middleware details, and exploiting a high-level
application description language. We differentiate from Adage as our description
language (ALDL) allows applications to mix processes and components from
different frameworks, and can express dynamic adaptive process networks. While
support for automatic translation of descriptions is less developed, GEA can
exploit ALDL to manage coallocation of resources over multiple middlewares
and frameworks.

The Proactive library [11] is a Java-based solution for parallel and distributed
programming. This library provides a programming model and a set of API
to develop complex Grid applications. Parallelism in Proactive applications is
defined by Active Objects, which host application control threads.

To obtain seamless deployment on different runtime environments, Proactive
exploits a descriptor-based approach. The Descriptor Deployment Model [12] of
Proactive is based on three levels of abstraction, (1) Virtual Nodes (VNs) host-
ing the application specific Active Objects, (2) Java Virtual Machines (JVMs),
hosting the application runtime environment, (3) processes, to create and/or
acquire JVMs. Virtual nodes are defined in the application code. They are pos-
sibly replicated, and instantiated (as Nodes) to run on actual JVMs. JVMs are
recruited exploiting information provided by processes.

These mappings are coded in XML Deployment Descriptors, with the target of
completely abstracting away from each other the hardware and software runtime
configuration, and decoupling application logic from deployment logic.

The approach results in a highly configurable deployment mechanism, which
can start new JVMs as needed on local and remote resources. Configuration is
left to the Proactive runtime, avoiding any reference to concrete resources in
the application code. The drawbacks, and main differences with respect to GEA
approach, are that it is difficult to extend the approach to non-Java components,
that mapping of application objects to resources is not automatic, and that a
first mapping step has to be performed by the user in designing the application,
by specifying the mapping of Active Objects to Virtual Nodes.

On the contrary, GEA’s Virtual Nodes represent compiler-generated sets of
processes, which are not related to the programmer’s view of the application,
but whose existence is suggested by the implementation of the run-time support.

To the best of our knowledge, KOALA [13] is the only other high-level tool to
provide extensive support for coallocation over Grids. KOALA manages reser-
vation and deployment of multi-job applications over the Grid. The job model
in KOALA is an executable to be run over a specified number of nodes, taking
as input a single data file. The Grid model consists of a set of clusters with
homogeneous nodes, interconnected by a known network and each one managed
by a compatible local resource manager. These assumptions allow to develop
algorithms for multi-site job scheduling taking into account problem parameters
like job sizes, input data sizes, available resource loads, network transfer band-
widths and job priority. With respect to KOALA, GEA is less integrated with



High Performance Heterogeneous Component-Based Applications 177

resource reservation mechanisms, and it would need more complex job scheduling
algorithms to find optimal allocation, due to the Grid model adopted. Never-
theless, GEA can deal with much more detailed resource constraints, allowing
to exploit a much more heterogeneous Grid and to satisfy compiler-generated
resource requirements in a dynamically evolving environment.

4 The ASSIST Environment Architecture

ASSIST is a high-level parallel programming environment: it provides a struc-
tured parallel programming language and a compiler to develop QoS enabled
parallel components [3,14]. Basically, applications are described by means of a
coordination language, which can express arbitrary graphs of (possibly) parallel
modules, which are the basic structural units of applications. ASSIST modules
are interconnected by typed streams of data, host portions of sequential code
(C, C++, Fortran) and can explicitly define even complex parallel semantics at
the module level.

A parallel module (parmod) coordinates a set of concurrent activities which
are performed by Virtual Processes (VPs). We do not fully describe here the AS-
SIST parallel coordination language [15] or its implementation, we only underline
that parmods allow to express parallel computations which are reconfigurable
during execution. User-defined code sections within the VPs are seen as the set of
atomic computations in the application by the reconfiguration run-time support.

The environment is designed to allow execution of parallel programs over
resources that are heterogeneous w.r.t. many characteristics, including CPU ar-
chitecture, operating system and middleware interface. The compiling tools can
also generate Grid.it components containing ASSIST code as well as alien soft-
ware resources (e.g. software components from other frameworks).

ASSIST/Grid.it components [3] are graphs of modules that are explicitly de-
clared as deployment units, and export information and control ports to allow
coordinated execution of several of them. Grid.it Components expose, among
others, Non-Functional ports related to QoS control. As shown in Fig. 2a, Grid.it
native components have a sophisticated internal structure, including different
classes of processes devoted to application execution and run-time support,

(1) computational processes (ASSIST processes in the figure),
(2) processes supporting the shared memory abstraction (HOC processes),
(3) manager processes implementing autonomic component behavior (CAM

and DCServer), i.e. steering and managing adaptation at the component
level,

(4) proxy processes allowing inter-component communication (component
bridges).

To deploy even a single component, a workflow of deployment actions is needed,
of which we show an example in Fig. 2b. Moreover, Grid.it native component
can interoperate with Corba/CCM ones (via IIOP-based RPC) [16] and with
Web Services (via HTTP/SOAP) [17], forming composite, multi-framework ap-
plications. Whether a wrapping approach is adopted, or component bridges



178 M. Coppola et al.

bridge

ASSIST
processes

HOC
processes

DCserverCAM

Functional Interfaces

Non−Functional
Interfaces

Component
bridge

Component

(a) The Grid.it distributed component model
implementation as a set of processes.

Component
Bridge

HOC master

HOC
slaves

HOC

ASSIST
processes

DC Server
CAM

Application

(b) Dependencies at the compo-
nent level among sets of processes.

Fig. 2. Process structure of a typical Grid.it component, and example of the deploy-
ment dependencies among it composing processes

are created, the overall deployment gets more complex. Running such a multi-
framework application requires the ability to devise and set up proper support
processes for any combination of resource, supporting middleware and supported
component framework.

Super-component have been introduced in [18] to describe higher-order compo-
nents, which can manage parametric graphs of arbitrary components according to
a parallel skeleton (i.e. well-known, parametric pattern of parallelism). They pro-
vide a fully compositional structure for self-managing Grid applications.

Super-components interact with the resource management and deployment
system to manage the life-cycle of their controlled components, and coordinate
their overall dynamic reconfiguration. To accomplish this task, they leverage on
a compositional self-adapting infrastructure, and on suitable behavioral models
corresponding to the parallel skeletons the specific super-component implements.

At any moment during an ASSIST application run, modules and components
can be assigned a new QoS contract, e.g. specifying a performance, security
or fault tolerance requirement. In order to fulfill the contracts, the component
framework continuously adapts component configurations, in terms of paral-
lelism degree, and process mapping [19]. This means having a progressive, dy-
namic deployment process where portions of the application are re-deployed
in order to meet a specific QoS target.

The adaptation mechanism relies on automatic user code instrumentation,
and on a hierarchy of Application Managers [3] exploiting knowledge about
the application structure and the run-time implementation. The hierarchy of
managers operating at different levels in the application structure is reflected
in the connections among the Non-functional ports of modules, components,
and super-components. Eventually, the whole execution is steered by the top-
level Application Manager (AM) component. Semantics and protocols of these



High Performance Heterogeneous Component-Based Applications 179

interactions are out of the scope of the paper, but we point out that some dy-
namic effects of resource management have non-local impact which need proper
handling in the management hierarchy (e.g. load balancing may need computing
resources in excess to be re-allocated to some seemingly unrelated part of the
application).

From the ASSIST point of view, the GEA is a component of the environ-
ment run-time support, the Grid Abstract Machine, as it manages the resource
allocation at all levels. ASSIST super-component managers leverage the GEA
when deploying new component(s), and the component and module run-time
support for reconfiguration (CAM and MAM entities) can contact GEA when-
ever resources are needed to spawn new processes in order to satisfy performance
contracts at the module level.

As a final remark, compositional, hierarchical component models (e.g. an im-
plementation of Fractal in Java or C++) also need an algorithmic way to break
down the overall application description into the set of descriptions of its compo-
nents, and in particular to project the application QoS specification over
that of components, in order to find appropriate resources to deploy each
component. This phase of “requirement unfolding” can happen outside of, or as
part of the deployment workflow. Current approach in Grid.it exploits the model
embedded in super-components. Transformation from application to component-
level requirements is recursively performed by the Application Manager, which
directly controls the unfolding step of deployment. As a different approach, a
compositional performance model for launch-time mapping has also been devel-
oped [20], which is suitable to devise a good initial resource allocation and speed
up the deployment of the whole application. Such a model can be produced and
evaluated during deployment, for instance implementing it within a particular
Component Translation Engine Plug-in (see Sect. 5.2).

5 Grid Execution Agent Design

The Grid Execution Agent (GEA) is the automatic tool developed within the
Grid.it project to seamlessly search resources for, deploy, and run complex
component-based Grid applications. The ASSIST/Grid.it environment targets
high-performance, data/computation intensive, and distributed applications.
GEA is designed to be a high-level resource management system, handling all
the low-level interaction with multiple Grid middlewares and with the code
providing dynamic adaptation. The Core of the Deployment cycle, as shown
in Fig. 3 in the inner box, follows the outline presented in [4]. We recall it
in short in the next section, before discussing its extension to a dynamic and
multi-middleware scenario.

5.1 Core Deployment Cycle

The input of the cycle is a description of the entities to deploy in a general
format, the Application Level Description Language (ALDL). This XML dialect
can encode the requirements for all the deployment entities, ranging from high



180 M. Coppola et al.

level performance specifications for components to concrete constraints on target
architectures for processes.

ALDL descriptions contain different types of information:

– static resource constraints and dynamic constraints – e.g. constraints related
to quantities that do not vary over time, like peak performance of a resource,
as opposed to those related to varying features, like available computation
bandwidth, which depends on resource load.

– hardware and software constraints – expressing the specific need of architec-
tures, operating systems, support or application libraries to be available to
an entity at its execution site.

– aggregate constraints – specifying constraints on groups of entities. Most
notably, constraints over communication networks (security, reachability)
and over sets of processes which employ specific common resources or launch
protocols (e.g. name services or fault-tolerant communication schemes).

GEA, starting from the ALDL description, automatically performs resource
discovery and selection, handles data and executable file transfers. Different GEA
modules perform successive steps of translation of high-level specifications into
deploy actions.

1. The ALDL description is parsed and an internal representation of the graph
of tasks is generated, annotated with specific requirements and constraints.

2. From the internal representation, resource queries are computed, which aim
at locating a set of resources satisfying all the static constraints.

3. Resource queries are executed exploiting the middleware.
4. A subset of the resources is selected, also exploiting information related to

dynamic constraints.
5. The graph of processes is mapped over the resources. This can result in

mapping cooperating entities over independently managed resources, thus
triggering coallocation in the following phase.

6. Finally, each entity is executed on the corresponding resource through the
middleware. This means e.g. staging and executing process code, configuring
its execution environment, or deploying a specific network configuration to
ensure a stated goal of communication QoS.

Actually, the discovery and mapping phases can loop until a set of resources is
found that allow to map the whole entity according to its execution constraints.
As a result of the deployment process, different parts of the ALDL description
are filtered, instantiated and translated into the appropriate forms to be enacted
on the middleware used by each part of the Grid computing platform.

5.2 A Modular Multi-middleware Architecture

The core cycle described in the previous section deploys applications over a
heterogeneous Grid, can exploit different middleware to access resources, but it
coordinates them in the execution of a single program.



High Performance Heterogeneous Component-Based Applications 181

Res. Config + Staging

Resource Selection

Resource Location

Core Deployment CycleGEA

Architecture

HTTP
Web Service

plain TCP

Execution

Process Translation Plug−in

M
id

d
le

w
a

re
 P

lu
g

−i
n

Monitoring

Process Mapping

Process Translation Plug−in

Process Translation Plug−in

ALDL Parser

Command Parser

Component Translation Engine Plug−In

D
e

p
lo

ym
e

nt
W

o
rk

flo
w

Channel Adaptor

Whiteboard System with Event−Oriented Interface

Fig. 3. GEA high-level architecture

As ASSIST was being developed into a component model, additional require-
ments were put onto GEA.

Separate/Dynamic Deployment. Applications are made up of multiple
components, and components are separate units of deployment. GEA has
to fully behave like a server, allowing to launch multiple components (even-
tually from different applications) and to manage each one separately over
possibly overlapping portions of the Grid.

Dynamic adaptation. Grid.it components can ask for and free resources (e.g.
processing nodes) at run-time, so they need access to deployment functions.

Access Protocols. GEA functionalities have to be accessible through different
protocols (plain TCP sockets, HTTP, Web Services), in order to exploit them
easily across the Grid.

Flexibility w.r.t. Component Models. Grid.it applications can exploit
components and services from other frameworks (CCM, Web Services),
which need to be deployed and accessed with their own protocols. Moreover,
it is a key feature to ease experimentation with various implementations of
a component model.

Higher Scalability. Provision to the user of a single point of access to the
whole Grid must not bring unneeded centralization and impair deployment
scalability.

Crossing of Domain Boundaries. GEA should be able to operate at the
boundary of a network and provide to the outside a unified access abstrac-
tion, independently of any Grid middleware present within the network.



182 M. Coppola et al.

The resulting extended architecture in Fig. 3 takes into account all these issues
and builds upon the core cycle used in the first design of GEA. It plans and enacts
the deployment workflow of Grid.it components, starting in the proper order the
server processes and service daemons needed by any component, as well as the
processes actually performing the computation.

A key point is that, to provide flexibility in experimenting with component
models, types of processes and diverse middlewares, GEA has been extended
via plug-in classes that implement different component setup workflows, process
launch protocols and interfaces to middleware primitives.

Channel Adaptor. A channel adaptor module is used in GEA to support mul-
tiple input protocols and control interfaces. For instance, the GEA server in-
teracts with the CAM component manager via TCP, with the user through
a set of command-line tools, provides Web Services / HTTP as a standard
interface. Authorization mechanisms (e.g. local or GSI authentication) can
be used to restrain the access to some of the adaptors, and, as different in-
terfaces can expose only part of the full set of GEA commands, to provide
different authorization levels.

Command Parser. The GEA command parser supports commands to man-
age the life-cycle of deployed entities (from providing them in archival form,
to monitoring their termination) and to control the configuration of the
GEA server. provide components in form of archives, to deploy component
instances, to dynamically add new resources, to monitor component termina-
tion, to quit the GEA server or to reload its static configuration information
(e.g. addresses of dynamic Grid information services). The command parser
is also in charge of managing multiple sessions: each component’s ALDL is
kept linked to a session identifier, which is a handle to monitor and steer
the component deployment and the set of allocated resources. The ALDL
representation of each component must be kept (1) to allow caching of com-
ponent archives and easily instantiate multiple copies of a component, (2) to
simplify handling of dynamic adaptation, as we can deploy additional pro-
cesses within a component by referring to their identifiers in the component
description. The parser manages multiple command session and internally
caches ALDL representation of components, in order to ease creating multi-
ple instances of a component, and to allow partial redeployment of a running
component.

ALDL Parser. The ALDL parser has been extended (w.r.t. [4]) to allow ex-
pressing explicit co-allocation and superposition of processes. A concept of
virtual node is used (close to that of Proactive) which is the abstraction
of a physical resource. Processes of different types are mapped to virtual
nodes, which are the units of low-level resource mapping. In order to sub-
sequently map virtual nodes on resources, process constraints are gathered
and summed up with the proper aggregation function (e.g. sum, for memory
requirements, union, for requirements over available libraries, and so on).

Component Translation Engine. The Component Translation Engine
is actually the highest level plug-in, transforming a component ALDL



High Performance Heterogeneous Component-Based Applications 183

specification into a network of process dependencies. The deployment work-
flow, hard-coded as a Java class in the plug-in, fulfills the dependency graph
among different types of processes in a given component model,

Process Translation Plug-in. Process Translation Plug-ins are a set of mid-
level translator classes, associated with the types of processes we need to
start. Each of these plug-ins can add special constraints over the resources
to select (e.g. having a public IP address), it can exploit information from
previously configured/deployed processes and service daemons, and it knows
the protocols to configure and deploy one type of processes (e.g. ASSIST
DCserver and ASSIST application processes). Translated requirements of all
processes within a component are produced by the appropriate plug-ins,
before starting the actual deployment process.

Core Deployment Cycle. As reported, the core deployment cycle has been
adapted from the previous GEA architecture, with all requirements gath-
ered from all virtual nodes first, and then satisfied all at the same time as
described in Sect. 5.1. The actual deploy order of processes (configuration,
staging and execution phases) in governed by the dependencies explicitly
introduced by the Component Engine and Process Translation plug-ins.

Middleware Plug-in. This is a low-level set of classes, one for each middle-
ware supported, exposing a set of primitives for the basic operations of all
the steps defined in the Core Deployment Cycle (resource location, selection,
mapping, staging and so on). Existing plug-ins support Globus managed re-
sources (using MDS as information repository), as well as SSL-based access
to clusters and local networks (XML static configuration files are used in
place of MDS). In some cases GEA extends the functionalities of the mid-
dleware, e.g. to provide status monitoring for resources accessed via simple
SSL.

Event System and GEA Whiteboard. A communication module is used as
a scratch-pad interface to allow uniform parameter management to plug-ins
of all levels. Different process types and different instances within a compo-
nent in general need to exchange and propagate synchronization informa-
tion, service addresses and other execution parameters (e.g. CCM processes
are run after their naming service is known and it is up). The whiteboard
implementation manages several kinds of events (TCP and HTTP commu-
nications, process termination, monitoring information) and uses them to
trigger deployment dependencies by means of callback functions that notify
registered plug-ins.

6 Conclusion and Future Work

We have presented the architecture of the GEA deployment tool developed
within the Grid.it project. The presented extension to the deployment cycle
developed in the previous implementation [4] allows greater flexibility and easier
customization of the application model, with respect to the types of component
we can actually deploy. The ASSIST application model, the Grid.it component



184 M. Coppola et al.

model and the launch and configuration procedures for component support ele-
ments are all boxed into separate plug-ins.

We are currently working on the integration of different component and ap-
plication models within GEA, including CCM components and Web Services
(within the Grid.it project) and POP C++ applications (within the CoreGRID
NoE). The new implementation matches with the extensions of the ALDL lan-
guage, which we just mentioned in this work, to cope with new mapping con-
straints and with contract specifications.

Currently, we are still working on the ALDL language to improve expres-
siveness w.r.t. QoS contract specification for applications and components. A
technique that allows to derive component constraints from application ones has
already been devised [20], which can be used to develop a Component Transla-
tion Plug-in to deal with a fully hierarchical component model (e.g. Fractal) to
devise an optimal initial application mapping starting from the ALDL specifica-
tion and the description of the available resources.

Both the implementation of a hierarchy of GEA servers for distributed deploy-
ment, and of more scalable deploy protocols for very large Grids, are in our future
plans. We have made preliminary experiments in this direction, exploiting hier-
archical and distributed communication schemes in overlay networks of servers.
We are going to exploit the flexibility of the GEA architecture to integrate these
prototypes as a new channel adaptor and dedicated low-level plug-ins.

References

1. Armstrong, R., Geist, A., Keahey, K., Kohn, S., McInnes, L., Parker, S., Smolinski,
B.: Toward a common component architecture for high-performance scientific com-
puting. In: 8th IEEE International Symposium on High-Performance Distributed
Computing. (1999)

2. Pérez, C., Priol, T., Ribes, A.: A parallel CORBA component model for numerical
code coupling. In: GRID 2002 : Third International Workshop, Springer (2002)

3. Aldinucci, M., Campa, S., Coppola, M., Danelutto, M., Laforenza, D., Puppin, D.,
Scarponi, L., Vanneschi, M., Zoccolo, C.: Components for high performance Grid
programming in Grid.it. In: Proc. of the Workshop on Component Models and
Systems for Grid Applications. CoreGRID series. Springer (2005)

4. Danelutto, M., Vanneschi, M., Zoccolo, C., Tonellotto, N., Baraglia, R., Fagni, T.,
Laforenza, D., Paccosi, A.: HPC Application Execution on Grids. In Getov, V.,
Laforenza, D., Reinefeld, A., eds.: Future Generation Grids. CoreGRID. Springer
(2006) Dagstuhl Seminar 04451 – Nov. 2004.

5. Adami, D., Giordano, S., Repeti, M., Coppola, M., aforenza, D.L., Tonellotto,
N.: Design and Implementation of a Grid Network-Aware Resource Br oker.
In Fahringer, T., ed.: Parallel and Distributed Computing and Networking 2006.
ACTA Press (2006)

6. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Int. J. of
Supercomputer Applications and High Performance Computing 11 (1997) 115–128

7. Frey, J., Tannenbaum, T., Foster, I., Livny, M., Tuecke, S.: Condor-G: A Com-
putation Management Agent for Multi-Institutional Grids. In: Proceedings of the
10th IEEE Symp. on High Performance Distributed Computing (HPDC10), San
Francisco, California, IEEE (2001)



High Performance Heterogeneous Component-Based Applications 185

8. Lacour, S., Pérez, C., Priol, T.: Generic application description model: Toward au-
tomatic deployment of applications on computational grids. In: 6th IEEE/ACM In-
ternational Workshop on Grid Computing (Grid2005), Seattle, WA, USA, Springer-
Verlag (2005)

9. Allen, G., et al.: Enabling Applications on the Grid – A GridLab Overview. In-
ternational Journal of High Performance Computing Applications 17 (2003) 449 –
466 Special issue on Grid Computing: Infrastructure and Applications.

10. Coppola, M., Danelutto, M., Lacour, S., Pérez, C., Priol, T., Tonellotto, N., Zoc-
colo, C.: Towards a Common Deployment Model for Grid systems. To appear in
CoreGRID series. (2005)

11. Baduel, L., Baude, F., Caromel, D., Contes, A., Huet, F., Morel, M., Quilici, R.:
Programming, Deploying, Composing, for the Grid. In: Grid Computing: Software
Environments and Tools. Springer-Verlag (2006)

12. Baude, F., Caromel, D., Mestre, L., Huet, F., Vayssière, J.: Interactive and
descriptor-based deployment of object-oriented grid applications. In: Proceedings
of the 11th IEEE International Symposium on High Performance Distributed Com-
puting, Edinburgh, Scotland, IEEE Computer Society (2002) 93–102

13. Mohamed, H., Epema, D.: The Design and Implementation of the KOALA Co-
allocating Grid Scheduler. In Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld,
A., Bubak, M., eds.: Advances in Grid Computing - EGC 2005: European Grid
Conference. Volume 3470 of LNCS. (2005) 640–650

14. Aldinucci, M., Coppola, M., Danelutto, M., Vanneschi, M.V., Zoccolo, C.: ASSIST
as a research framework for high-performance Grid programming environments. In
Cunha, J.C., Rana, O.F., eds.: Grid Computing: Software environments and Tools.
Springer (2005) 1–32 (To appear, draft available as TR-04-09, Dept. of Computer
Science, University of Pisa, Italy, 2004).

15. Vanneschi, M.: The programming model of ASSIST, an environment for parallel
and distributed portable applications. Parallel Computing 28 (2002) 1709–1732

16. Magini, S., Pesciullesi, P., Zoccolo, C.: Parallel software interoperability by means of
CORBA in the ASSIST programming environment. In: Kosch, H., Böszörmeny, L.,
Hellwagner, H.(eds.) Euro-Par 2003. LNCS, vol. 3648, pp. 679–688. Springer, Hei-
delberg (2004)

17. Aldinucci, M., Danelutto, M., Paternesi, A., Ravazzolo, R., Vanneschi, M.: Building
interoperable grid-aware ASSIST applications via WebServi ces. In: PARCO 2005:
Parallel Computing, Malaga, Spain (2005)

18. Aldinucci, M., Bertolli, C., Campa, S., Coppola, M., Vanneschi, M., Veraldi, L.,
Zoccolo, C.: Self-Configuring and Self-Optimising Grid Components in the GCM
model and their ASSIST Implementation. In: Joint Workshop on HPC Grid Pro-
gramming Environments and Components (HPC-GECO/CompFrame). (2006)

19. Aldinucci, M., Petrocelli, A., Pistoletti, E., Torquati, M., Vanneschi, M., Veraldi,
L., Zoccolo, C.: Dynamic reconfiguration of grid-aware applications in ASSIST.
In Cunha, J.C., Medeiros, P.D., eds.: 11th Intl Euro-Par: Parallel and Distributed
Computing. Volume 3648 of LNCS., Lisboa, Portugal, Springer (2005) 771–781

20. Tonellotto, N., Zoccolo, C.: Characterization of the performance of ASSIST pro-
grams. Technical Report TR-0007, CoreGRID - Network of Excellence (2005)


	Introduction
	Component Deployment in a Multi-middleware Heterogenous Environment
	Related Work
	The ASSIST Environment Architecture
	Grid Execution Agent Design
	Core Deployment Cycle
	A Modular Multi-middleware Architecture

	Conclusion and Future Work



