Skip to main content

Trajectory-Based Representation of Human Actions

  • Conference paper
Artifical Intelligence for Human Computing

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4451))

Abstract

This work addresses the problem of human action recognition by introducing a representation of a human action as a collection of short trajectories that are extracted in areas of the scene with significant amount of visual activity. The trajectories are extracted by an auxiliary particle filtering tracking scheme that is initialized at points that are considered salient both in space and time. The spatiotemporal salient points are detected by measuring the variations in the information content of pixel neighborhoods in space and time. We implement an online background estimation algorithm in order to deal with inadequate localization of the salient points on the moving parts in the scene, and to improve the overall performance of the particle filter tracking scheme. We use a variant of the Longest Common Subsequence algorithm (LCSS) in order to compare different sets of trajectories corresponding to different actions. We use Relevance Vector Machines (RVM) in order to address the classification problem. We propose new kernels for use by the RVM, which are specifically tailored to the proposed representation of short trajectories. The basis of these kernels is the modified LCSS distance of the previous step. We present results on real image sequences from a small database depicting people performing 12 aerobic exercises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pantic, M., et al.: Human computing and machine understanding of human behavior: A survey. In: International Conference on Multimodal Interfaces (2006)

    Google Scholar 

  2. Wang, J.J., Singh, S.: Video analysis of human dynamics - A survey. Real Time Imaging 9, 321–346 (2003)

    Article  Google Scholar 

  3. Wang, L., Hu, W., Tan, T.: Recent Developments in Human Motion Analysis. Pattern Recognition 36, 585–601 (2003)

    Article  Google Scholar 

  4. Bar-Shalom, Y., Fortmann, T.: Tracking and Data Association. Academic Press, London (1988)

    MATH  Google Scholar 

  5. Julier, S.J., Uhlmann, J.K.: Unscented filtering and nonlinear estimation. Proceedings of the IEEE 92(3), 401–422 (2004)

    Article  Google Scholar 

  6. Wu, Y., et al.: Unscented kalman filtering for additive noise case: Augmented versus nonaugmented. IEEE Signal Processing Letters 12(5), 357–360 (2005)

    Article  MathSciNet  Google Scholar 

  7. LaViola, J.: A comparison of unscented and extended Kalman filtering for estimating quaternion motion. In: Proceedings of the American Control Conference, vol. 3, pp. 2435–2440 (2003)

    Google Scholar 

  8. Zhang, Y., Ji, Q.: Active and dynamic information fusion for facial expression understanding from image sequences. IEEE Trans. Pattern Analysis and Machine Intelligence 27, 699–714 (2005)

    Article  Google Scholar 

  9. Gu, H., Ji, Q.: Information extraction from image sequences of real-world facial expressions. Machine Vision and Applications 16(2), 105–115 (2005)

    Article  Google Scholar 

  10. Isard, M., Blake, A.: Condensation – conditional density propagation for visual tracking. International Journal of Computer Vision 29(1), 5–28 (1998)

    Article  Google Scholar 

  11. Isard, M., Blake, A.: Icondensation: Unifying low-level and high-level tracking in a stochastic framework. European Conference on Computer Vision 29(1), 893–908 (1998)

    Google Scholar 

  12. Lichtenauer, J., Hendriks, M.R.E.: Influence of the observation likelihood function on particle filtering performance in tracking applications. In: Automatic Face and Gesture Recognition, pp. 767–772 (2004)

    Google Scholar 

  13. Chang, C., Ansari, R., Khokhar, A.: Multiple object tracking with kernel particle filter. In: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 566–573 (2005)

    Google Scholar 

  14. Schmidt, J., Fritsch, J., Kwolek, B.: Kernel particle filter for real-time 3D body tracking in monocular color images. In: Automatic Face and Gesture Recognition, pp. 567–572 (2006)

    Google Scholar 

  15. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-Based Object Tracking. IEEE Trans. Pattern Analysis and Machine Intelligence 25(5), 564–577 (2003)

    Article  Google Scholar 

  16. Yang, C., Duraiswami, R., Davis, L.: Fast multiple object tracking via a hierarchical particle filter. In: Proc. IEEE Int. Conf. Computer Vision, vol. 1, pp. 212–219 (2005)

    Google Scholar 

  17. Shan, C., et al.: Real time hand tracking by combining particle filtering and mean shift. In: Automatic Face and Gesture Recognition, vol. 1, pp. 669–674 (2004)

    Google Scholar 

  18. Pitt, M., Shephard, N.: Filtering via simulation: auxiliary particle filtering. J. American Statistical Association 94, 590 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Patras, I., Pantic, M.: Tracking deformable motion. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 1066–1071 (2005)

    Google Scholar 

  20. Patras, I., Pantic, M.: Particle filtering with factorized likelihoods for tracking facial features. In: Automatic Face and Gesture Recognition, pp. 97–102 (2004)

    Google Scholar 

  21. Matthews, I., Ishikawa, T., Baker, S.: The template update problem. In: Proceedings of the British Machine Vision Conference (2003)

    Google Scholar 

  22. Jepson, A., Fleet, D., El-Maraghi, T.: Robust Online Appearance Models for Visual Tracking. IEEE Trans. Pattern Analysis and Machine Intelligence 25(10), 1296–1311 (2003)

    Article  Google Scholar 

  23. Avidan, S.: Support Vector Tracking. IEEE Trans. Pattern Analysis and Machine Intelligence 26(8), 1064–1072 (2004)

    Article  Google Scholar 

  24. Gavrila, D., Davis, L.: 3-D Model-Based Tracking of Humans in Action: A Multiview Approach. In: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, pp. 73–80 (1996)

    Google Scholar 

  25. MacCormick, J., Isard, M.: Partitioned Sampling, Articulated Objects and Interface-Quality Hand Tracking. In: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, pp. 3–19 (2000)

    Google Scholar 

  26. Stenger, B., et al.: Model-Based Hand Tracking Using a Hierarchical Bayesian Filter. IEEE Trans. Pattern Analysis and Machine Intelligence 28(5), 1372–1384 (2006)

    Article  Google Scholar 

  27. Chang, W., Chen, C., Hung, Y.: Appearance-guided particle filtering for articulated hand tracking. In: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 235–242 (2005)

    Google Scholar 

  28. Sigal, L., et al.: Tracking loose-limbed people. In: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 421–428 (2004)

    Google Scholar 

  29. Wu, Y., Hua, G., Yu, T.: Tracking articulated body by dynamic Markov network. In: Proc. IEEE Int. Conf. Computer Vision, vol. 2, pp. 1094–1101 (2003)

    Google Scholar 

  30. Han, T., Ning, H., Huang, T.: Efficient Nonparametric Belief Propagation with Application to Articulated Body Tracking. In: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 214–221 (2006)

    Google Scholar 

  31. Fei, H., Reid, I.: Probabilistic Tracking and Recognition of Non-Rigid Hand Motion. In: Int. Workshop on Analysis and Modeling of Faces and Gestures, pp. 60–67 (2003)

    Google Scholar 

  32. Elgammal, A., et al.: Exemplar-based tracking and recognition of arm gestures. In: Proc. Int. Symposium on Image and Signal Processing and Analysis, vol. 2, pp. 656–661 (2003)

    Google Scholar 

  33. Nickel, K., Seemann, E., Stiefelhagen, R.: 3D-Tracking of Head and Hand for Pointing Gesture Recognition in a Human-Robot Interaction Scenario. In: Automatic Face and Gesture Recognition, pp. 565–570 (2004)

    Google Scholar 

  34. Deutscher, J., et al.: Tracking through Singularities and discontinuities by random sampling. In: Proc. IEEE Int. Conf. Computer Vision, vol. 2, pp. 1144–1149 (1999)

    Google Scholar 

  35. Black, M., Jepson, A.: Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. International Journal of Computer Vision 26(1), 63–84 (1998)

    Article  Google Scholar 

  36. Kato, M., Chen, Y.W., Xu, G.: Articulated Hand Tracking by PCA-ICA Approach. In: Automatic Face and Gesture Recognition, pp. 329–334 (2006)

    Google Scholar 

  37. Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 126–133 (2000)

    Google Scholar 

  38. Comaniciu, D., Ramesh, V., Meer, P.: Real-Time Tracking of non-rigid objects using mean-shift. In: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 142–149 (2000)

    Google Scholar 

  39. Rao, C., Yilmaz, A., Shah, M.: View-invariant representation and recognition of actions. International Journal of Computer Vision 50(2), 203–226 (2002)

    Article  MATH  Google Scholar 

  40. Rao, C., et al.: View-invariant alignment and matching of video sequences. In: Proc. IEEE Int. Conf. Computer Vision, vol. 2, pp. 939–945 (2003)

    Google Scholar 

  41. Gavrila, D.: The Visual Analysis of Human Movement: A Review. Comp. Vision, and Image Understanding 73(1), 82–92 (1999)

    Article  MATH  Google Scholar 

  42. Aggarwal, J., Cai, Q.: Human Motion Analysis: A Review. Comp. Vision, and Image Understanding 73(3), 428–440 (1999)

    Article  Google Scholar 

  43. Blank, M., et al.: Actions as space-time shapes. In: Proc. IEEE Int. Conf. Computer Vision, vol. 2, pp. 1395–1402 (2005)

    Google Scholar 

  44. Zelnik-Manor, L., Irani, M.: Event-based analysis of video. In: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 123–130 (2001)

    Google Scholar 

  45. Song, Y., Goncalves, L., Perona, P.: Unsupervised Learning of Human Motion. IEEE Trans. Pattern Analysis and Machine Intelligence 25(7), 814–827 (2003)

    Article  Google Scholar 

  46. Fanti, C., Zelnik-Manor, L., Perona, P.: Hybrid Models for Human Motion Recognition. In: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1166–1173 (2005)

    Google Scholar 

  47. Feng, X., Perona, P.: Human action recognition by sequence of movelet codewords. In: Proc. Int. Symposium on 3D Data Processing Visualization and Transmission, pp. 105–115 (2002)

    Google Scholar 

  48. Figueroa, P., et al.: Tracking markers for human motion analysis. In: Proc. of IX European Signal Processing Conf., Rhodes, Greece, pp. 941–944 (1998)

    Google Scholar 

  49. Moeslund, T., Nørgaard, L.: A brief overview of hand gestures used in wearable human computer interfaces. Technical Report CVMT 03-02 (2003)

    Google Scholar 

  50. Haralick, R., Shapiro, L.: Computer and Robot Vision II. Addison-Wesley, Reading (1993)

    Google Scholar 

  51. Gilles, S.: Robust Description and Matching of Images. PhD thesis, University of Oxford (1998)

    Google Scholar 

  52. Kadir, T., Brady, M.: Scale saliency: a novel approach to salient feature and scale selection. In: International Conference on Visual Information Engineering, pp. 25–28 (2000)

    Google Scholar 

  53. Oikonomopoulos, A., Patras, I., Pantic, M.: Spatiotemporal Salient Points for Visual Recognition of Human Actions. IEEE Trans. Systems, Man and Cybernetics Part B 36(3), 710–719 (2005)

    Article  Google Scholar 

  54. Stauffer, C.: Adaptive background mixture models for real-time tracking. In: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, pp. 246–252 (1999)

    Google Scholar 

  55. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proc. International Conference on Data Engineering, pp. 673–684 (2002)

    Google Scholar 

  56. Buzan, D., Sclaroff, S., Kollios, G.: Extraction and clustering of motion trajectories in video. In: Proceedings, International Conference on Pattern Recognition, vol. 2, pp. 521–524 (2004)

    Google Scholar 

  57. Tipping, M.: The Relevance Vector Machine. In: Advances in Neural Information Processing Systems, pp. 652–658 (1999)

    Google Scholar 

  58. Su, C., et al.: A two-step approach to multiple facial feature tracking: Temporal particle filter and spatial belief propagation. In: Proc. IEEE Int’l Conf. on Automatic Face and Gesture Recognition, pp. 433–438 (2004)

    Google Scholar 

  59. Pantic, M., Patras, I.: Dynamics of Facial Expressions-Recognition of Facial Actions and their Temporal Segments from Face Profile Image Sequences. IEEE Trans. Systems, Man and Cybernetics Part B 36(2), 433–449 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thomas S. Huang Anton Nijholt Maja Pantic Alex Pentland

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Oikonomopoulos, A., Patras, I., Pantic, M., Paragios, N. (2007). Trajectory-Based Representation of Human Actions. In: Huang, T.S., Nijholt, A., Pantic, M., Pentland, A. (eds) Artifical Intelligence for Human Computing. Lecture Notes in Computer Science(), vol 4451. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72348-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72348-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72346-2

  • Online ISBN: 978-3-540-72348-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics