Skip to main content

Performance-Based Workload Distribution on Grid Environments

  • Conference paper
Advances in Grid and Pervasive Computing (GPC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4459))

Included in the following conference series:

  • 820 Accesses

Abstract

Imbalanced workload-distribution can significantly degrade performance of grid computing environments. In the past, the theory of divisible load has been widely investigated in static heterogeneous systems. However, it has not been widely applied to grid environments, which are characterized by heterogeneous resources and dynamic environments. In this paper, we propose a performance-based approach to workload distribution for master-slave types of applications on grids. Furthermore, applications with irregular workloads are addressed. We implemented three kinds of applications and conducted experimentations on our grid test-beds. Experimental results show that this approach performs more efficiently than conventional schemes. Consequently, we claim that dynamic workload distribution can benefit applications on grid environments.

This work was partially supported by National Science Council of Republic of China under the number of NSC95-2752-E-009-015-PAE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Divisible Load Theory, http://www.ee.sunysb.edu/~tom/MATBE/index.html

  2. Global Grid Forum, http://www.ggf.org/

  3. Introduction to Grid Computing with Globus, http://www.ibm.com/redbooks

  4. KISTI Grid Testbed, http://Gridtest.hpcnet.ne.kr/

  5. MPICH, http://www-unix.mcs.anl.gov/mpi/mpich/

  6. MPICH-G2, http://www.hpclab.niu.edu/mpi/

  7. Network Weather Service, http://nws.cs.ucsb.edu/

  8. Sun ONE Grid Engine, http://wwws.sun.com/software/Gridware/

  9. TeraGrid, http://www.teragrid.org/

  10. The Globus Project, http://www.globus.org/

  11. TIGER Grid Report, http://gamma2.hpc.csie.thu.edu.tw/ganglia/

  12. Agrawal, R., Shafer, J.C.: Parallel Mining of Association Rules. IEEE Transactions on Knowledge and Data Engineering 8(6), 962–969 (1996)

    Article  Google Scholar 

  13. Agrawal, R., Srikant, R.: Fast algorithms for Mining Association Rules. In: Proc. 20th Very Large Data Bases Conf., pp. 487–499 (1994)

    Google Scholar 

  14. Baker, M.A., Fox, G.C.: Metacomputing: Harnessing Informal Supercomputers. In: High Performance Cluster Computing, May 1999, Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  15. Banicescu, I., et al.: Overhead Analysis of a Dynamic Load Balancing Library for Cluster Computing. In: Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (2005), http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9722

  16. Banino, C., et al.: Scheduling strategies for master-slave tasking on heterogeneous processor platforms. IEEE Transactions on Parallel and Distributed Systems 15(4), 319–330 (2004)

    Article  Google Scholar 

  17. Beaumont, O., et al.: Scheduling Divisible Loads on Star and Tree Networks: Results and Open Problems. IEEE Transactions on Parallel and Distributed Systems 16(3), 207–218 (2005)

    Article  Google Scholar 

  18. Bharadwaj, V., et al.: Scheduling Divisible Loads in Parallel and Distributed Systems. IEEE Computer Society Press, Los Alamitos (1996), http://www.ee.sunysb.edu/~tom/MATBE/surveyCC.pdf

    Google Scholar 

  19. Bharadwaj, V., Ghose, D., Robertazzi, T.G.: Divisible Load Theory: A New Paradigm for Load Scheduling in Distributed Systems. Cluster Computing 6(1), 7–18 (2003), http://www.ee.sunysb.edu/~tom/MATBE/surveyCC.pdf

    Article  Google Scholar 

  20. Cheng, K.W., et al.: A Parallel Loop Self-Scheduling on Grid Computing Environments. In: Proceedings of the 2004 IEEE International Symposium on Parallel Architectures, Algorithms and Networks, KH, China, May 2004, pp. 409–414 (2004)

    Google Scholar 

  21. Chronopoulos, A.T., et al.: A Class of Loop Self-Scheduling for Heterogeneous Clusters. In: Proceedings of the 2001 IEEE International Conference on Cluster Computing, pp. 282–291 (2001)

    Google Scholar 

  22. Chronopoulos, A.T., et al.: Distributed Loop-Self-Scheduling Schemes for Heterogeneous Computer Systems. Concurrency and Computation: Practice and Experience 18, 771–785 (2006)

    Article  Google Scholar 

  23. Comino, N., Narasimhan, V.L.: A Novel Data Distribution Technique for Host-Client Type Parallel Applications. IEEE Transactions on Parallel and Distributed Systems 13(2), 97–110 (2002)

    Article  Google Scholar 

  24. Drozdowski, M., Lawenda, M.: On Optimum Multi-installment Divisible Load Processing in Heterogeneous Distributed Systems. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 231–240. Springer, Heidelberg (2005)

    Google Scholar 

  25. Foster, I., Karonis, N.: A Grid-Enabled MPI: Message Passing in Heterogeneous Distributed Computing Systems. In: Proc. 1998 SC Conference (November 1998)

    Google Scholar 

  26. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. International J. Supercomputer Applications 11(2), 115–128 (1997)

    Article  Google Scholar 

  27. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual Organizations. International J. Supercomputer Applications 15(3) (2001)

    Google Scholar 

  28. Foster, I.: The Grid: A New Infrastructure for 21st Century Science. Physics Today 55(2), 42–47 (2002)

    Article  Google Scholar 

  29. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  30. Herrera, J., et al.: Loosely-coupled loop scheduling in computational grids. In: Proceedings of the 20th IEEE International Parallel and Distributed Processing Symposium (2006), http://www.ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9722

  31. Hummel, S.F., Schonberg, E., Flynn, L.E.: Factoring: a method scheme for scheduling parallel loops. Communications of the ACM 35, 90–101 (1992)

    Article  Google Scholar 

  32. Kruskal, C., Weiss, A.: Allocating independent subtaskson parallel processors. IEEE Transactions on Software Engineering 11, 1001–1016 (1984)

    Article  Google Scholar 

  33. Li, H., et al.: Locality and Loop Scheduling on NUMA Multiprocessors. In: Proceedings of the 1993 International Conference on Parallel Processing, vol. II, pp. 140–147 (1993)

    Google Scholar 

  34. Mandelbrot, B.B.: Fractal Geometry of Nature. W.H. Freeman, New York (1988)

    Google Scholar 

  35. Polychronopoulos, C.D., Kuck, D.: Guided Self-Scheduling: a Practical Scheduling Scheme for Parallel Supercomputers. IEEE Trans. on Computers 36(12), 1425–1439 (1987)

    Google Scholar 

  36. Robertazzi, T.G.: Ten Reasons to Use Divisible Load Theory. Computer 36(5), 63–68 (2003), http://www.ee.sunysb.edu/~tom/MATBE/ten-reasons.pdf

    Article  Google Scholar 

  37. Shih, W.C., Yang, C.T., Tseng, S.S.: A Performance-Based Parallel Loop Self-Scheduling on Grid Environments. In: Jin, H., Reed, D., Jiang, W. (eds.) NPC 2005. LNCS, vol. 3779, pp. 48–55. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  38. Shih, W.C., Yang, C.T., Tseng, S.S.: A Hybrid Parallel Loop Scheduling Scheme on Grid Environments. In: Zhuge, H., Fox, G.C. (eds.) GCC 2005. LNCS, vol. 3795, pp. 370–381. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  39. Shih, W.C., Yang, C.T., Tseng, S.S.: A Performance-based Approach to Dynamic Workload Distribution for Master-Slave Applications on Grid Environments. In: Chung, Y.-C., Moreira, J.E. (eds.) GPC 2006. LNCS, vol. 3947, pp. 73–82. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  40. Smarr, L., Catlett, C.: Metacomputing. Communications of the ACM 35(6), 44–52 (1992)

    Article  Google Scholar 

  41. Tabirca, S., Tabirca, T., Yang, L.T.: A convergence study of the discrete FGDLS algorithm. IEICE Transactions on Information and Systems E89-D(2), 673–678 (2006)

    Article  Google Scholar 

  42. Tang, P., Yew, P.C.: Processor self-scheduling for multiple-nested parallel loops. In: Proceedings of the 1986 International Conference on Parallel Processing, pp. 528–535 (1986)

    Google Scholar 

  43. Tzen, T.H., Ni, L.M.: Trapezoid self-scheduling: a practical scheduling scheme for parallel compilers. IEEE Transactions on Parallel and Distributed Systems 4, 87–98 (1993)

    Article  Google Scholar 

  44. Yang, C.T., Chang, S.C.: A Parallel Loop Self-Scheduling on Extremely Heterogeneous PC Clusters. Journal of Information Science and Engineering 20(2), 263–273 (2004)

    Google Scholar 

  45. Yang, C.-T., Li, K.-C., Cheng, K.-W.: An Efficient Parallel Loop Self-scheduling on Grid Environments. In: Jin, H., et al. (eds.) NPC 2004. LNCS, vol. 3222, pp. 92–100. Springer, Heidelberg (2004)

    Google Scholar 

  46. Yang, C.T., Cheng, K.W., Li, K.C.: An Efficient Parallel Loop Self-Scheduling Scheme for Cluster Environments. The Journal of Supercomputing 34, 315–335 (2005)

    Article  Google Scholar 

  47. Zaki, M.J.: Parallel and Distributed Association Mining: A Survey. IEEE Concurrency 7(4), 14–25 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christophe Cérin Kuan-Ching Li

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Shih, WC., Yang, CT., Chen, TT., Tseng, SS. (2007). Performance-Based Workload Distribution on Grid Environments. In: Cérin, C., Li, KC. (eds) Advances in Grid and Pervasive Computing. GPC 2007. Lecture Notes in Computer Science, vol 4459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72360-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72360-8_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72359-2

  • Online ISBN: 978-3-540-72360-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics