Skip to main content

Intelligence Through Interaction: Towards a Unified Theory for Learning

  • Conference paper
Advances in Neural Networks – ISNN 2007 (ISNN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4491))

Included in the following conference series:

Abstract

Machine learning, a cornerstone of intelligent systems, has typically been studied in the context of specific tasks, including clustering (unsupervised learning), classification (supervised learning), and control (reinforcement learning). This paper presents a learning architecture within which a universal adaptation mechanism unifies a rich set of traditionally distinct learning paradigms, including learning by matching, learning by association, learning by instruction, and learning by reinforcement. In accordance with the notion of embodied intelligence, such a learning theory provides a computational account of how an autonomous agent may acquire the knowledge of its environment in a real-time, incremental, and continuous manner. Through a case study on a minefield navigation domain, we illustrate the efficacy of the proposed model, the learning paradigms encompassed, and the various types of knowledge learned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, M.L.: Embodied Cognition: A Field Guide. Artificial Intelligence 149, 91–130 (2003)

    Article  Google Scholar 

  2. Carpenter, G.A., Grossberg, S.: A Massively Parallel Architecture for a Self- organizing Neural Pattern Recognition Machine. Computer Vision, Graphics, and Image Processing 37, 54–115 (1987)

    Article  MATH  Google Scholar 

  3. Carpenter, G.A., Grossberg, S. (eds.): Pattern Recognition by Self-Organizing Neural Networks. MIT Press, Cambridge (1991)

    Google Scholar 

  4. Carpenter, G.A., Grossberg, S., Rosen, D.B.: Fuzzy ART: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance System. Neural Networks 4, 759–771 (1991)

    Article  Google Scholar 

  5. Carpenter, G.A., Grossberg, S.: Adaptive Resonance Theory. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 87–90. MIT Press, Cambridge (2003)

    Google Scholar 

  6. Duda, R.O., Hart, P.E., Stock, D.G. (eds.): Pattern Classification (Section 10.11.2), 2nd edn. John Wiley, New York (2001)

    MATH  Google Scholar 

  7. Gordan, D., Subramanian, D.: A Cognitive Model of Learning to Navigate. In: Proceedings, Nineteenth Annual Conference of the Cognitive Science Society, pp. 271–276 (1997)

    Google Scholar 

  8. Grossberg, S.: Adaptive Pattern Recognition and Universal Recoding, I: Parallel Development and Coding of Neural Feature Detectors. Biological Cybernetics 23, 121–134 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grossberg, S.: Adaptive Pattern Recognition and Universal Recoding, II: Feedback, Expectation, Olfaction, and Illusion. Biological Cybernetics 23, 187–202 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grossberg, S.: How Does the Cerebral Cortex Work? Development, Learning, Attention, and 3d Vision by Laminar Circuits of Visual cortex. Behavioral and Cognitive Neuroscience Reviews 2, 47–76 (2003)

    Article  Google Scholar 

  11. He, J., Tan, A.-H., Tan, C.-L.: On Machine Learning Methods for Chinese Documents Classification. Applied Intelligence 18(3), 311–322 (2003)

    Article  MATH  Google Scholar 

  12. Levine, D.S. (ed.): Introduction to Neural and Cognitive Modeling. Lawrence Erlbaum Associates, Mahwah (2000)

    Google Scholar 

  13. Raizada, R., Grossberg, S.: Towards a Theory of the Laminar Architecture of Cerebral Cortes: Computational Clues from the Visual System. Cerebral Cortex 13, 200–213 (2003)

    Article  Google Scholar 

  14. Sun, R., Merrill, E., Peterson, T.: From Implicit Skills to Explicit Knowledge: A Bottom-up Model of Skill Learning. Cognitive Science 25(2), 203–244 (2001)

    Article  Google Scholar 

  15. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  16. Tan, A.H.: Adaptive Resonance Associative Map. Neural Networks 8(3), 437–446 (1995)

    Article  Google Scholar 

  17. Tan, A.H.: Cascade ARTMAP: Integrating Neural Computation and Symboli Knowledge Processing. IEEE Transactions on Neural Networks 8(2), 237–250 (1997)

    Article  Google Scholar 

  18. Tan, A.-H., Ong, H.-L., Pan, H., Ng, J., Li, Q.-X.: Towards Personalized Web Intelligence. Knowledge and Information Systems 6(5), 595–616 (2004)

    Article  Google Scholar 

  19. Tan, A.-H., Soon, H.-S.: Predictive Adaptive Resonance Theory and Knowledge Discovery in Database. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805, pp. 173–176. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Tan, A.H.: FALCON: A Fusion Architecture for Learning, Cognition, and Navigation. In: Proceedings, International Joint Conference on Neural Networks, pp. 3297–3302 (2004)

    Google Scholar 

  21. Tan, A.H.: Self-organizing Neural Architecture for Reinforcement Learning. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 470–475. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Tan, A.H., Pan, H.: Predictive Neural Networks for Gene Expression Data Analysis. Neural Networks 18(3), 297–306 (2005)

    Article  MATH  Google Scholar 

  23. Tan, A.H., Lu, N., Xiao, D.: Integrating Temporal Difference Methods and Selforganizing Neural Networks for Reinforcement Learning with Delayed Evaluative feedback. IEEE Transactions on Neural Networks, to appear

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tan, AH., Carpenter, G.A., Grossberg, S. (2007). Intelligence Through Interaction: Towards a Unified Theory for Learning. In: Liu, D., Fei, S., Hou, ZG., Zhang, H., Sun, C. (eds) Advances in Neural Networks – ISNN 2007. ISNN 2007. Lecture Notes in Computer Science, vol 4491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72383-7_128

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72383-7_128

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72382-0

  • Online ISBN: 978-3-540-72383-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics