Abstract
We extend the statistical neurodynamics to study transient dynamics of sequence processing neural networks with finite dilution, and the theoretical results are supported by extensive numerical simulations. It is found that the order parameter equations are completely equivalent to those of the Generating Functional Method, which means that crosstalk noise follows normal distribution even in the case of failure in retrieval process. In order to verify the gaussian assumption of crosstalk noise, we numerically obtain the cumulants of crosstalk noise, and third- and fourth-order cumulants are found to be indeed zero even in non-retrieval case.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sompolinsky, H., Kanter, I.: Temporal Association in Aymmetric Neural Networks. Phys. Rev. Lett. 57, 2861–2864 (1986)
Düring, A., Coolen, A.C.C., Sherrington, D.: Phase Diagram and Storage Capacity of Sequence Processing Neural Networks. J. Phys. A: Math. Gen. 31, 8607–8621 (1998)
Kawamura, M., Okada, M.: Transient Dynamics for Sequence Processing Neural Networks. J. Phys. A: Math. Gen. 35, 253–266 (2002)
Theumann, W.K.: Mean-field Dynamics of Sequence Processing Neural Networks with Finite Connectivity. Physica A 328, 1–12 (2003)
Yong, C., Hai, W.Y., Qing, Y.K.: The Attractors in Sequence Processing Neural Networks. Int. J. Modern Phys. C 11, 33–39 (2000)
Hopfield, J.J.: Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proc. Nat. Acad. Sci. 79, 2554–2558 (1982)
Amit, D.J., Gutfreund, H., Sompolinsky, H.: Spin-glass Models of Neural Networks. Phys. Rev. A. 32, 1007–1018 (1985)
Amari, S.: Statistical Neurodynamics of Associative Memory. In: Proc. IEEE Conference on Neural Networks., vol. 1, pp. 633–640 (1988)
Okada, M.: A Hierarchy of Macrodynamical Equations for Associative Memory. Neural Networks 8, 833–838 (1995)
Nishimori, H., Ozeki, T.: Retrieval Dynamics of Associative Memory of the Hopfield Type. J. Phys. A: Math. Gen. 26, 859–871 (1993)
Ozeki, T., Nishimori, H.: Noise Distributions in Retrieval Dynamics of the Hopfield Model. J. Phys. A: Math. Gen. 27, 7061–7068 (1994)
Kitano, K., Aoyagi, T.: Retrieval Dynamics of Neural Networks for Sparsely Coded Sequential Patterns. J. Phys. A: Math. Gen. 31, L613–L620 (1998)
Gardner, E., Derrida, B., Mottishaw, P.: Zero Temperature Parallel Dynamics for Infinite Range Spin Glasses and Neural Networks. J. Physique 48, 741–755 (1987)
Sommers, H.J.: Path-integral Approach to Ising Spin-glass Dynamics. Phys. Rev. Lett. 58, 1268–1271 (1987)
Gomi, S., Yonezawa, F.: A New Perturbation Theory for the Dynamics of the Little-Hopfield Model. J. Phys. A: Math. Gen. 28, 4761–4775 (1995)
Koyama, H., Fujie, N., Seyama, H.: Results From the Gardner-Derrida-Mottishaw Theory of Associative Memory. Neural Networks 12, 247–257 (1999)
Coolen, A.C.C.: Statistical Mechanics of Recurrent Neural Networks II. Dynamics. cond-mat/0006011
Watkin, T.L.H., Sherrington, D.: The Parallel Dynamics of a Dilute Symmetric Hebb-rule Network. J. Phys A: Math. Gen. 24, 5427–5433 (1991)
Derrida, B., Gardner, E., Zippelius, A.: An Exactly Solvable Asymmetric Neural Network Model. Europhys. Lett. 4, 167–173 (1987)
Patrick, A.E., Zagrebnov, V.A.: Parallel Dynamics for an Extremely Diluted Neural Network. J. Phys. A: Math. Gen. 23, L1323–L1329 (1990)
Castillo, I.P., Skantzos, N.S.: The Little-Hopfield Model on a Random Graph. cond-mat/0307499
Sompolinsky, H.: Neural Networks with Nonlinear Synapses and Static Noise. Phys. Rev. A. 34, 2571–2574 (1986)
Wemmenhove, B., Coolen, A.C.C.: Finite Connectivity Attractor Neural Networks. J. Phys A: Math. Gen. 36, 9617–9633 (2003)
Chen, Y., Wang, Y.H., Yang, K.Q.: Macroscopic Dynamics in Separable Neural Networks. Phys. Rev. E 63, 041901-4 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, P., Chen, Y. (2007). Statistical Neurodynamics for Sequence Processing Neural Networks with Finite Dilution. In: Liu, D., Fei, S., Hou, ZG., Zhang, H., Sun, C. (eds) Advances in Neural Networks – ISNN 2007. ISNN 2007. Lecture Notes in Computer Science, vol 4491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72383-7_134
Download citation
DOI: https://doi.org/10.1007/978-3-540-72383-7_134
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72382-0
Online ISBN: 978-3-540-72383-7
eBook Packages: Computer ScienceComputer Science (R0)