Skip to main content

Obstacle Avoidance Path Planning for Mobile Robot Based on Ant-Q Reinforcement Learning Algorithm

  • Conference paper
Advances in Neural Networks – ISNN 2007 (ISNN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4491))

Included in the following conference series:

Abstract

Path planning is an important task in mobile robot control. When the robot must move rapidly from any arbitrary start positions to any target positions in environment, a proper path must avoid both static obstacles and moving obstacles of arbitrary shape. In this paper, an obstacle avoidance path planning approach for mobile robots is proposed by using Ant-Q algorithm. Ant-Q is an algorithm in the family of ant colony based methods that are distributed algorithms for combinatorial optimization problems based on the metaphor of ant colonies. In the simulation, we experimentally investigate the sensitivity of the Ant-Q algorithm to its three methods of delayed reinforcement updating and we compare it with the results obtained by other heuristic approaches based on genetic algorithm or traditional ant colony system. At last, we will show very good results obtained by applying Ant-Q to bigger problem: Ant-Q find very good path at higher convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci. Cybern. 4, 100–107 (1968)

    Article  Google Scholar 

  2. Warren, C.W.: Fast Path Planning using Modified A* Method. In: Proc. IEEE Int. Conf. Robotics and Automation, Atlanta, GA, pp. 662–667 (1993)

    Google Scholar 

  3. Latombe, J.C.: Robot Motion Planning. Kluwer, Boston (1991)

    Book  MATH  Google Scholar 

  4. Takahashi, O., Schilling, R.J.: Motion Planning in A Plane using Generalized Voronoi Diagrams. IEEE Trans. Robot. Autom. 11, 143–150 (1989)

    Article  Google Scholar 

  5. Hou, E., Zheng, D.: Mobile Robot Path Planning based on Hierarching Hexagonal Decomposition and Artificial Potential Fields. J. Robot. Syst. 11, 605–614 (1994)

    Article  Google Scholar 

  6. Schwartz, J.T., Sharir, M.: On the Piano Movers’ Problem: I. The Case If a Two-Dimensional Rigid Polygonal Body Moving Amidst Polygonal Barriers. IEEE Trans. Robot. Autom. 36, 345–398 (1983)

    MATH  Google Scholar 

  7. Leven, D., Sharir, M.: An Efficient and Simple Motion Planning Algorithms for a Ladder Moving in Two-Dimensional Space Amidst Polygonal Barriers. In: Proc. 1st ACM Symp. Computational Geometry, Nice, France, pp. 1208–1213 (1997)

    Google Scholar 

  8. Khatib, O.: Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int. J. Rob. Res. 5, 90–98 (1986)

    Article  Google Scholar 

  9. Chuang, J., Ahuja, N.: An Analytically Tractable Potential Field Model of Free Space and Its Application in Obstacle Avoidance. IEEE Trans. Syst., Man, Cybern. B 28, 729–736 (1998)

    Article  Google Scholar 

  10. Valavanis, K.P., Hebert, T., Kolluru, R., Tsourveloudis, N.: Mobile Robot Navigation in 2-D Dynamic Environments using an Electrostatic Potential Field. IEEE Trans. Syst., Man, Cybern. A 30, 187–196 (2000)

    Article  Google Scholar 

  11. Bandi, S., Talmann, D.: Space Discretization for Efficient Human Navigation. Computer Graphic Forums 17, 195–206 (1998)

    Article  Google Scholar 

  12. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  13. Borenstein, J., Koren, Y.: The Vector Field Histogram-Fast Obstacle Avoidance for Mobile Robots. IEEE Trans. Robotics and Automation 7, 278–288 (1991)

    Article  Google Scholar 

  14. Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant Algorithms and Stigmergy. Future Generation Computer Systems 16, 851–871 (2000)

    Article  Google Scholar 

  15. Wen, Y., Dengwu, M., Hongda, F.: Path Panning for Space Robot based on the Self-Adaptive Ant Colony Algorithm. In: IEEE, 1st International Symposium on Systems and Control in Aerospace and Astronautics (2006)

    Google Scholar 

  16. Hocaoglu, C., Sanderson, A.C.: Planning Multiple Paths with Evolutionary Speciation. IEEE Trans. Evolutionary Computation 5, 169–191 (2001)

    Article  Google Scholar 

  17. Gemeinder, M., Gerke, M.: GA-based Path Planning for Mobile Robot Systems Employing an Active Search Algorithm. Applied Soft Computing 3, 149–158 (2003)

    Article  Google Scholar 

  18. Tian, L., Collins, C.: An Effective Robot Trajectory Planning Method using a Genetic Algorithm. Mechatronics 14, 455–470 (2004)

    Article  Google Scholar 

  19. Gambardella, L.M., Dorigo, M.: Ant-Q: A Reinforcement Learning Approach to the Traveling Salesman Problem. In: Prieditis, A., Russell, S. (eds.) Proceedings of ML-95, Twelfth International Conference on Machine Learning, pp. 252–260. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  20. Dorigo, M., Gambardella, L.M.: A Study of Some Properties of Ant-Q. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 656–665. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  21. Colorni, A., Dorigo, M., Maniezzo, V.: An Investigation of Some Properties of an Ant Algorithm. In: Proceedings of the Parallel Problem Solving from Nature Conference, pp. 509–520 (1992)

    Google Scholar 

  22. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed Optimization by Ant Colonies. In: Proceedings of the First European Conference of Artificial Life, pp. 134–144 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vien, N.A., Viet, N.H., Lee, S., Chung, T. (2007). Obstacle Avoidance Path Planning for Mobile Robot Based on Ant-Q Reinforcement Learning Algorithm. In: Liu, D., Fei, S., Hou, ZG., Zhang, H., Sun, C. (eds) Advances in Neural Networks – ISNN 2007. ISNN 2007. Lecture Notes in Computer Science, vol 4491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72383-7_83

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72383-7_83

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72382-0

  • Online ISBN: 978-3-540-72383-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics