Skip to main content

Neuro-Adaptive Formation Control of Multi-Mobile Vehicles: Virtual Leader Based Path Planning and Tracking

  • Conference paper
Advances in Neural Networks – ISNN 2007 (ISNN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4491))

Included in the following conference series:

  • 1438 Accesses

Abstract

This paper presents a neuro intelligent virtual leader based approach for close formation of a group of mobile vehicles. Neural Network-based trajectory planning is incorporated into the leading vehicle so that an optimal reference path is generated automatically by the virtual leader, which guides the whole team vehicles to the area of interest as precisely as possible. The steering control scheme is derived based on the structural properties of the vehicle dynamics. Simulation on multiple vehicles formation is conducted as a verification of the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mizuno, Y., Kato, S., Mutoh, A., Itoh, H.: A Behavioral Model Based on Meme and Qualia for Multi-agent Social Behavior. In: Proc. 19th Int. Conf. Advanced Information Networking and Applications, vol. 2, pp. 181–184 (2005)

    Google Scholar 

  2. Wang, Y.X.: Sociological Models of Software Engineering. In: Proc. Canadian Conf. Electrical and Computer Engineering, pp. 1819–1822 (2005)

    Google Scholar 

  3. Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge (1998)

    Google Scholar 

  4. Balch, T., Dellaert, F., Feldman, A., Guillory, A., et al.: How Multirobot Systems Research Will Accelerate Our Understanding of Social Animal Behavior. Proceedings of IEEE 94(7), 1445–1463 (2006)

    Article  Google Scholar 

  5. Monteiro, S., Bicho, E.: A Dynamical Systems Approach to Behavior Based Formation Control. In: Proc. IEEE Int. Conf. Robotics and Automation, Washington, D.C., vol. 3, pp. 2606–2611 (2002)

    Google Scholar 

  6. Egerstedt, M., Hong, X.M.: Formation Constrained Multi-agent Control. IEEE Transaction of Robotics and Automation 17, 947–951 (2001)

    Article  Google Scholar 

  7. Jongusuk, J., Mita, T.: Tracking Control of Multiple Mobile Robots. In: Proc. IEEE Int. Conf. Robotics and Automation, Seoul, Korea, vol. 3, pp. 2885–2890 (2001)

    Google Scholar 

  8. Young, B.J., Beard, R.W., Kelsey, J.M.: A Control Scheme for Improving Multi-vehicle Formation Maneuvers. Proc. American Control Conf. 2, 704–709 (2001)

    Article  Google Scholar 

  9. Esposito, J.M., Kumar, V.: Closed Loop Motion Plans for Mobile Robots. In: Proc. IEEE Int. Conf. Robotics and Automation, San Francisco, CA, vol. 3, pp. 2777–2782 (2000)

    Google Scholar 

  10. Desay, J.P., Ostrowski, J.P., Kumar, V.: Modeling and Control of Formations of Nonholonomic Mobile Robots. IEEE Trans. Robot. and Automat. 17, 905–908 (2001)

    Article  Google Scholar 

  11. Desay, J.P., Kumar, V., Ostrowski, P.: Control of Change in Formation for a Team of Mobile Robots. In: Proc. IEEE Int. Conf. Robot. and Automat. Detroit, MI, vol. 2, pp. 1556–1561 (1999)

    Google Scholar 

  12. Fierro, R., Das, A.K., Kumar, V., et al.: A Vision-based Formation Control Framework. IEEE Trans. Robot. and Automat. 18, 813–825 (2002)

    Article  Google Scholar 

  13. Lemay, M., Michaud, F., Letourneau, D., Valin, J.M.: Autonomous Initialization of Robot Formations. In: Proc. IEEE Conf. Robot. and Automat., vol. 3, pp. 3018–3023 (2004)

    Google Scholar 

  14. Shao, J.Y., Xie, G.M., Yu, J.Z., Wang, L.: Leader-Follower Formation Control of Multiple Mobile Robots. In: Proc. IEEE, Int. Symposium on Intelligent Control, Limassol, Cyprus, pp. 803–813 (2005)

    Google Scholar 

  15. Song, Y.D., Li, Y., Liao, X.H.: Orthogonal Transformation Based Robust Adaptive Close Formation Control of Multi-UAVs. In: Proc. American Control Conf., Portland, Oregon, vol. 5, pp. 2983–2988 (2005)

    Google Scholar 

  16. Sun, Z., Cai, W.C., Liao, X.H., Dong, T., Song, Y.D.: Adaptive Path Control of Unmanned Ground Vehicles. In: Proc. 38th Southeastern Symposium on System Theory, Cookeville, TN, pp. 507–511 (2006)

    Google Scholar 

  17. Song, Y.D.: Neuro-Adaptive Control with Application to Robotic Systems. J. Robotic Systems 14(6), 433–447 (1997)

    Article  MATH  Google Scholar 

  18. Slotine, J.J., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  19. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  20. Lenonard, N.E., Fiorelli, E.: Virtual Leaders, Artificial Potentials and Coordinated Control of Groups. In: Proc. 40th IEEE Conf. Decision and Control, Orlando, FL, pp. 2968–2973 (2001)

    Google Scholar 

  21. Tanner, H., Jadbabaie, A., Pappas, G.J.: Stable Flocking of Mobile Agentsrt I: Fixed Topology. In: Proc. Conf. Decision and Control, Maui, HI, pp. 2010–2015 (2003)

    Google Scholar 

  22. Cai, W.C., Weng, L.G., Zhang, R., et al.: Development of Real-time Control Test-bed for Unmanned Mobile Vehicles. In: Proc. 32 Int. Conf. IEEE Industrial Electronics, Paris, France (2006)

    Google Scholar 

  23. Koh, K.C., Beom, H.R., Kim, J.S., Cho, H.S.: A Neural Network-Based Navigation System for Mobile Robots. In: KACC 94, pp. 2709–2714 (1994)

    Google Scholar 

  24. Patifo, H.D., Carelli, R.: Neural Network-Based Optimal Control for autonomous Mobile Vehicle Navigation. In: Proc. of the 2004 IEEE International Symposium on Intelligent Control, Taipei, Taiwan, pp. 391–396 (2004)

    Google Scholar 

  25. Liu, D.R.: Neural Network-Based Adaptive Critic Designs for Self-Learning Control. In: Proc. of the 9th Int. Conf. on Neural Information Processing, Nov. 18-22, 2002, vol. 3, pp. 1252–1256 (2002)

    Google Scholar 

  26. Seaks, R.E., Cox, C.J., Mathia, K., Maren, A.J.: Asymptotic Dynamic Programming: Preliminary Concepts and Results. In: Proc. of Int. Conf. of Neural Networks, Houston, TX, USA, pp. 2273–2278 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, Z., Zhang, M.J., Liao, X.H., Cai, W.C., Song, Y.D. (2007). Neuro-Adaptive Formation Control of Multi-Mobile Vehicles: Virtual Leader Based Path Planning and Tracking. In: Liu, D., Fei, S., Hou, ZG., Zhang, H., Sun, C. (eds) Advances in Neural Networks – ISNN 2007. ISNN 2007. Lecture Notes in Computer Science, vol 4491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72383-7_92

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72383-7_92

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72382-0

  • Online ISBN: 978-3-540-72383-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics