Abstract
Mean shift tracking fails when the velocity of target is so large that the target’s window kernel in the previous frame can not cover the target in the current frame. Combination of mean shift and single Kalman filter also fails when the target’s velocity changed suddenly. To deal with the problem of tracking image target that has large and changing velocity, an efficient image tracking method integrated mean shift and double model filters is proposed. Two motion models can switch each other by using a probabilistic likelihood. Experiment results show the method integrated mean shift and double model filters can successfully keep tracking target, no matter the target’s velocity is large or small, changing or constant, with modest requirement of computation resource.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Stauffer, C., Grimson, W.E.L.: Adaptive Background Mixture Models for Real-Time Tracking. In: Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 246–252 (1999)
Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000)
Magee, D.: Tracking Multiple Vehicle using Foreground, Background and Motion Models. Image and Vision Computing 22, 143–155 (2004)
Papageorgiou, C., Oren, M., Poggio, T.: General Framework for Object Detection. Journal of Engineering and Applied Science, 555–562 (1998)
Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian Detection using Wavelet Templates. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 193–199 (1997)
Isard, M., Blake, A.: Condensation–Conditional Density Propagation for Visual Tracking. Int. J. Computer Vision 29, 5–28 (1998)
Yilmaz, A., Shafique, K., Shah, M.: Target Tracking in Airborne Forward Looking Infrared Imagery. Image and Vision Computing 21, 623–635 (2003)
Nguyen, H.T., Worring, M., Van den Boomagaard, R.: Occlusion Robust Adaptive Template Tracking. In: IEEE Int. Conf. on Computer Vision, vol. 1, pp. 678–683 (2001)
Comaniciu, D., Ramesh, V., Meer, P.: Real-Time Tracking of Non-Rigid Objects using Mean Shift. In: IEEE Proceedings of Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina, vol. 2, pp. 142–149 (2000)
Comaniciu, D., Ramesh, V.: Mean Shift and Optimal Prediction for Efficient Object Tracking. In: IEEE International Conference on Image Processing, vol. 3, pp. 70–73 (2000)
Comaniciu, D., Ramesh, V., Meer, P.: Kernel-Based Object Tracking. IEEE Trans. Pattern Analysis and Machine Intelligence 25, 564–577 (2003)
Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Trans. Pattern Analysis and Machine Intelligence 24, 603–619 (2002)
Shan, C., Wei, Y., Tan, T., Ojardias, F.: Real Time Hand Tracking by Combining Particle Filtering and Mean Shift. In: Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 669–674 (2004)
Grewal, M.S., Andrews, A.P.: Kalman Filtering Theory and Practice Using MATLAB, 2nd edn., pp. 163–165. John Wiley & Sons, Chichester (2001)
Bar-Shalom, Y., Chang, K.C., Blom, H.A.P.: Tracking a Maneuvering Target using Input Estimation Versus the Interacting Multiple Model Algorithm. IEEE Trans. Aerosp. Electron. Syst. 2, 296–300 (1989)
Mazor, E., Averbuch, A., Bar-Shalom, Y., Dayan, J.: Interacting Multiple Model Methods in Target Tracking: A Survey. IEEE Trans. Aerosp. Electron. Syst. 34, 103–123 (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Han, R., Jing, Z., Xiao, G. (2007). Probabilistic Motion Switch Tracking Method Based on Mean Shift and Double Model Filters. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds) Advances in Neural Networks – ISNN 2007. ISNN 2007. Lecture Notes in Computer Science, vol 4492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72393-6_84
Download citation
DOI: https://doi.org/10.1007/978-3-540-72393-6_84
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72392-9
Online ISBN: 978-3-540-72393-6
eBook Packages: Computer ScienceComputer Science (R0)