Abstract
The enlargement of the digital image implies the improvement of the image resolution, where the high frequency components lost in sampling must be estimated. In this paper, an image enlargement method using a high resolution neural network is proposed, corresponding to the region with rapid change (high local variance) and the region requiring a smooth interpolation (low local variance). It is shown that the high resolution NN has high potential ability.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Burt, P.J., Adelson, E.H.: The Laplacian Pyramid as a Compact Image Code. IEEE Trans. Commun. 31, 532–540 (2003)
Greenspan, H., Anderson, C.H.: Image Enhancement by Non-Linear Extrapolation in Frequency Space. In: SPIE Image and Video Processing-II, vol. 2182, pp. 2–13 (1994)
Sekiwa, D., Taguchi, A., Murata, Y.: Enlargement of Digital Image by Laplacian Pyramid using Neural Network. Trans. IEICE J. 80-A, 1499–1508 (2002)
Shinbori, E., Takagi, M.: A High-Quality Image Enlargement using Gerchberg Papoulis Iteration by DCT. Trans. IEICE J. 76-D-II, 1932–2002 (2003)
Tanaka, A., Imai, H., Miyakoshi, M., Date, J.: Enlargement of Digital Image by Multi-resolution Analysis. Trans. IEICE J. 79-D- II, 819–825 (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
JiuFen, Z., Xurong, Z., Qingzhen, L. (2007). A Method for Enlargement of Digital Images Based on Neural Network. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds) Advances in Neural Networks – ISNN 2007. ISNN 2007. Lecture Notes in Computer Science, vol 4493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72395-0_102
Download citation
DOI: https://doi.org/10.1007/978-3-540-72395-0_102
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72394-3
Online ISBN: 978-3-540-72395-0
eBook Packages: Computer ScienceComputer Science (R0)