Skip to main content

Stabilizing Lagrange-Type Nonlinear Programming Neural Networks

  • Conference paper
Advances in Neural Networks – ISNN 2007 (ISNN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4493))

Included in the following conference series:

  • 2037 Accesses

Abstract

Inspired by the Lagrangian multiplier method with quadratic penalty function, which is widely used in Nonlinear Programming Theory, a Lagrange-type nonlinear programming neural network whose equilibria coincide with KKT pairs of the underlying nonlinear programming problem was devised with minor modification in regard to handling inequality constraints[1,2]. Of course, the structure of neural network must be elaborately conceived so that it is asymptotically stable. Normally this aim is not easy to be achieved even for the simple nonlinear programming problems. However, if the penalty parameters in these neural networks are taken as control variables and a control law is found to stabilize it, we may reasonably conjecture that the categories of solvable nonlinear programming problems will be greatly increased. In this paper, the conditions stabilizing the Lagrange-type neural network are presented and control-Lyapunov function approach is used to synthesize the adjusting laws of penalty parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Huang, Y.C.: A Novel Method to Handle Inequality Constraints for Convex Programming Neural Network. Neural Processing Letters 16, 17–27 (2002)

    Article  MATH  Google Scholar 

  2. Huang, Y.C.: Lagrange-Type Neural Networks for Nonlinear Programming Problems with Inequality Constraints. In: Proceeding of the 44th Conference on Decision and Control, pp. 1578–1883 (2005)

    Google Scholar 

  3. Hou, Z.G., Gupta, M.M., Nikiforuk, P.N., Tan, M., Cheng, L.: A Recurrent Network for Hierarchical Control of Interconnected Dynamic Systems. IEEE Transactions on Neural Networks (in press)

    Google Scholar 

  4. Hou, Z.G., Wu, C.P., Bao, P.: A Neural Network for Hierarchical Optimization of Nonlinear Large-scale Systems. International Journal of Systems Science 29, 159–166 (1998)

    Article  Google Scholar 

  5. Hou, Z.G.: A Hierarchical Optimization Neural Network for Large-scale Dynamic Systems. Automatica 37, 1931–1940 (2001)

    Article  MATH  Google Scholar 

  6. Hou, Z.G., Song, K.Y., Gupta, M.M., Tan, M.: Neural Units with Higher Order Synaptic Operations for Robotic Image Processing Applications. Soft Computing 11, 221–228 (2007)

    Article  Google Scholar 

  7. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  8. Bertsekas, D.P.: Constrainted Optimization and Lagrange Methods. Academic Press, New York (1982)

    Google Scholar 

  9. Rockafellar, R.T.: Lagrange Multiplier and Optimality. SIAM Review 35, 183–238 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kennedy, M.P., Chuond, L.O.: Neural Networks for Nonlinear Programming. IEEE Transaction on Circuits and Systems 35, 554–562 (1988)

    Article  Google Scholar 

  11. Cichocki, A., Unbehauen, R.: Neural Networks for Optimization and Singal Processing. Wiley, Chichester (1993)

    Google Scholar 

  12. Zhang, S., Constantinides, A.G.: Lagrange Programming Neural Networks. IEEE Transaction on on Neural Networks 39, 441–452 (1992)

    MATH  Google Scholar 

  13. Lakshmikantham, V., Matrosov, V.M., Sivasundaram, S.: Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems. Kluwer Academic Publisher, Dordrecht (1991)

    MATH  Google Scholar 

  14. LaSalle, J.P.: The Stability of Dynamical Systems. Springer, New York (1976)

    MATH  Google Scholar 

  15. Kaliora, G., Astolfi, A.: Stabilization with Positive and Quantized Control. In: Proceeding of the 41st Conference on Decision and Control, pp. 1892–1897 (2002)

    Google Scholar 

  16. Marquez, H.J.: Nonlinear Control Systems-Analysis and Design. John Wiley & Sons, Hoboken (2003)

    MATH  Google Scholar 

  17. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  18. Brockett, R.W.: Asymptotic Stability and Feedback Stabilization. In: Brockett, R.W., Millman, R.S., Sussmann, H.J. (eds.) Differential Geometric Control Theory, pp. 181–191. Birkhäuser, Boston (1983)

    Google Scholar 

  19. Clarke, F.H., Ledyaev, Y.S., Sontag, E.D., Subbotin, A.I.: Asymptotic Controllability Implies Feedback Stabilization. IEEE Trans. Automat. Control 42, 1394–1407 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    MATH  Google Scholar 

  21. Sontag, E.D.: Stability and Stabilization: Discontinuities and the Effect of Disturbances. In: Clarke, F.H., Stern, R.J. (eds.) Nonlinear Analysis, Differential Equations and Control, Kluwer Academ Publishers, Dordrecht (1999)

    Google Scholar 

  22. Sontag, E.D.: Mathematical Control Theory, Deterministic Finite Dimensional Systems, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  23. Sontag, E.D.: A Lyapunov-like Characterization of Asymptotic Controllability. SIAM J. Control Optim. 21, 462–471 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Derong Liu Shumin Fei Zengguang Hou Huaguang Zhang Changyin Sun

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Huang, Y. (2007). Stabilizing Lagrange-Type Nonlinear Programming Neural Networks. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds) Advances in Neural Networks – ISNN 2007. ISNN 2007. Lecture Notes in Computer Science, vol 4493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72395-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72395-0_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72394-3

  • Online ISBN: 978-3-540-72395-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics