Abstract
In this paper, a new universal steganalysis algorithm based on multiwavelet higher-order statistics and Support Vector Machines(SVM) is proposed. We follow the philosophy introduced in Ref[7] in which the features are calculated from the stego image’s noise component in the wavelet domain. Instead of working in wavelet domain, we calculate the features in multiwavelet domain. We call this Multiwavelet Higher-Order Statistics (MHOS) feature. A nonlinear SVM classifier is then trained on a database of images to construct a universal steganalyzer. The comparison to the current state-of-the-art universal steganalyzers, which was performed on the same image databases under the same testing conditions, indicates that the proposed universal steganalysis offers improved performance.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fridrich, J., Goljan, M.: Practical steganalysis: State of the art. SPIE Photonics West, Electronic Imaging, San Jose, CA (2002)
Avcıbaş, I., Memon, N., Sankur, B.: Steganalysis Using Image Quality Metrics. In: Delp, E., et al. (eds.) Proc. SPIE Electronic Imaging, Security and Watermarking of Multimedia Contents II, vol. 4314, pp. 523–531 (2001)
Farid, H., Lyu, S.: Detecting Hidden Messages Using Higher-Order Statistics and Support Vector Machines. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 340–354. Springer, Heidelberg (2003)
Lyu, S., Farid, H.: Steganalysis Using Color Wavelet Statistics and One-Class Support Vector Machines. In: Proc. SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VI, vol. 5306, pp. 35–45 (2004)
Harmsen, J.J., Pearlman, W.A.: Steganalysis of Additive Noise Modelable Information Hiding. In: Delp, E., et al. (eds.) Proc. SPIE Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents V, pp. 131–142 (2003)
Andrew, D.K.: Steganalysis of LSB Matching in Grayscale Images. IEEE Signal Processing Letters 12, 441–444 (2005)
Holotyak, T., Fridrich, J., Voloshynovskiy, S.: Blind Statistical Steganalysis of Additive Steganography Using Wavelet Higher Order Statistics. In: Dittmann, J., Katzenbeisser, S., Uhl, A. (eds.) CMS 2005. LNCS, vol. 3677, pp. 273–274. Springer, Heidelberg (2005)
Goljan, M., Holotyak, T.: New Blind Steganalysis and its Implications. Proc. SPIE Electronic Imaging, Photonics West (January 2006)
Avcıbaş, I., Harrazib, M., Memon, N., Sankur, B.: Image Steganalysis with Binary Similarity Measures. EURASIP JASP 17, 2749–2757 (2005)
Xuan, G., Shi, Y.Q., Gao, J., Zou, D., Yang, C., Zhang, Z., Chai, P., Chen, C.-H., Chen, W.: Steganalysis based on multiple features formed by statistical moments of wavelet characteristic functions. In: Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 262–277. Springer, Heidelberg (2005)
Strela, V., Heller, P.N., Strang, G., Topiwala, P., Heil, C.: The application of multiwavelet filter banks to image processing. IEEE Trans. Imag. Process. 8, 548–563 (1999)
Shen, L.X., Tan, H.H., Tham, J.Y.: Symmetric-antisymmetric orthogonal multiwavelets and related scalar wavelets. Appl. Comput. Harmonic Anal. 8, 258–279 (2000)
Tham, J.Y., Shen, L.X., Lee, S.L., Tan, H.H.: A general approach for analysis and application of discrete multiwavelet transform. IEEE Trans. Signal Process 48, 457–464 (2000)
Geronimo, J.S., Hardin, D.P., Massopust, P.R.: Fractal functions and wavelet expressions based on several scaling functions. J. Approx. Theory 78, 373–401 (1994)
Mihcak, M.K., Kozintsev, I., Ramchandran, K.: Spatially Adaptive Statistical Modeling of Wavelet Image Coefficients and its Application to Denoising. In: Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, vol. 6, pp. 3253–3256 (1999)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Hsu, C.W., Chang, C.C., Lin, C.J.: A Practical Guide to Support Vector Classification, http://www.Csie.ntu.edu.tw/~cjlin/papers/
Images downloaded from http://philip.greenspun.com/
NRCS Photo Gallery, http://photogallery.nrcs.usda.gov
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Li, Sp., Zhang, Ys., Li, Ch., Zhao, F. (2007). Universal Steganalysis Using Multiwavelet Higher-Order Statistics and Support Vector Machines. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds) Advances in Neural Networks – ISNN 2007. ISNN 2007. Lecture Notes in Computer Science, vol 4493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72395-0_49
Download citation
DOI: https://doi.org/10.1007/978-3-540-72395-0_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72394-3
Online ISBN: 978-3-540-72395-0
eBook Packages: Computer ScienceComputer Science (R0)