Skip to main content

Abstract

Given a directed graph \(\mathcal{G}\), the K node-disjoint paths problem consists in finding a partition of \(\mathcal{G}\) into K node-disjoint paths, such that each path ends up in a given subset of nodes in \(\mathcal{G}\). This article provides a necessary condition for the K node-disjoint paths problem which combines (1) the structure of the reduced graph associated with \(\mathcal{G}\), (2) the structure of each strongly connected component of \(\mathcal{G}\) with respect to dominance relation between nodes, and (3) the way the nodes of two strongly connected components are inter-connected. This necessary condition is next used to deal with a path partitioning constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arikati, S.R., Rangan, C.P.: Linear algorithm for optimal path cover problem on interval graphs. Inf. Process. Lett. 35(3), 149–153 (1990)

    Article  MATH  Google Scholar 

  2. Balinski, M.L., Quandt, R.E.: On an Integer Program for Delivery Problem. Operations Research 12(2), 300–304 (1964)

    Article  Google Scholar 

  3. Beldiceanu, N., Contejean, E.: Introducing global constraint in CHIP. Mathl. Comput. Modelling 20(12), 97–123 (1994)

    Article  MATH  Google Scholar 

  4. Beldiceanu, N., Flener, P., Lorca, X.: The tree constraint. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 64–78. Springer, Heidelberg (2005)

    Google Scholar 

  5. Beldiceanu, N., Flener, P., Lorca, X.: Combining tree partitioning, precedence, incomparability, and degree constraints, with an application to phylogenetic and ordered-path problems. Technical Report 2006-020, Department of Information Technology, Uppsala University, Sweden (April 2006)

    Google Scholar 

  6. Berge, C.: Graphes et Hypergraphes. Dunod, Paris (1970)

    MATH  Google Scholar 

  7. Cambazard, H., Bourreau, E.: Conception d’une contrainte globale de chemin (In French). In: JNPC’04, pp. 107–120 (2004)

    Google Scholar 

  8. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of Mathematics 51, 161–166 (1950)

    Article  MathSciNet  Google Scholar 

  9. Fortune, S., Hopcroft, J.E., Wyllie, J.: The directed subgraph homeomorphism problem. Theor. Comput. Sci. 10, 111–121 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kaya, L.G., Hooker, J.N.: A filter for the circuit constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 706–710. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph. ACM Trans. Program. Lang. Syst. 1(1), 121–141 (1979)

    Article  MATH  Google Scholar 

  12. Prosser, P., Unsworth, C.: Rooted tree and spanning tree constraints. Technical Report cppod-13-2006, CP Pod research group (May 2006)

    Google Scholar 

  13. Quesada, L., Van Roy, P., Deville, Y., Collet, R.: Using dominators for solving constrained path problems. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 73–87. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Schrijver, A.: Combinatorial Optimization. Springer, Berlin (2003)

    MATH  Google Scholar 

  15. Sellmann, M.: Cost-based filtering for shorter path constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 694–708. Springer, Heidelberg (2003)

    Google Scholar 

  16. Steiner, G.: On the k-path partition of graphs. Theor. Comput. Sci. 290(3), 2147–2155 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Suurballe, J.W.: Disjoint Paths in a Network. Networks 4, 125–145 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  18. Vygen, J.: NP-completeness of some edge-disjoint paths problems. Discrete Appl. Math. 61(1), 83–90 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yan, J.-H., Chang, G.J.: The path-partition problem in block graphs. Inf. Process. Lett. 52(6), 317–322 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pascal Van Hentenryck Laurence Wolsey

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Beldiceanu, N., Lorca, X. (2007). Necessary Condition for Path Partitioning Constraints. In: Van Hentenryck, P., Wolsey, L. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2007. Lecture Notes in Computer Science, vol 4510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72397-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72397-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72396-7

  • Online ISBN: 978-3-540-72397-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics