Skip to main content

Pattern Recognition Using Modular Neural Networks and Fuzzy Integral as Method for Response Integration

  • Chapter
Analysis and Design of Intelligent Systems using Soft Computing Techniques

Part of the book series: Advances in Soft Computing ((AINSC,volume 41))

Abstract

We describe in this paper a new approach for pattern recognition using modular neural networks with a fuzzy logic method for response integration. We proposed a new architecture for modular neural networks for achieving pattern recognition in the particular case of human fingerprints. Also, the method for achieving response integration is based on the fuzzy Sugeno integral. Response integration is required to combine the outputs of all the modules in the modular network. We have applied the new approach for fingerprint recognition with a real database of fingerprints from students of our institution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sharkey, A.J.C.: Combining Artificial Neural Nets: Ensemble and Modular Multi-Nets Systems. Springer, New York (1998)

    Google Scholar 

  2. Hansen, L.K., Salomon, P.: Neural Network Ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence (1990)

    Google Scholar 

  3. Albrecht, S.: A Modular Neural Network Architecture with Additional Generalization Abilities for High Dimensional Input Vectors (1996)

    Google Scholar 

  4. Fu, H.-C., et al.: Divide-and-Conquer Learning and Modular Perceptron Networks. IEEE Transaction on Neural Networks, vol. 12

    Google Scholar 

  5. Boers, E.J.W., Kuiper, H.: Biological Metaphors and the Design of Modular Artificial Neural Networks. Departments of Computer Science and Experimental and Theoretical Psychology at Leid University, the Netherlands (1992)

    Google Scholar 

  6. Ronco, E., Gawthrop, P.: Modular neural networks: A State of the Art. Technical Report, Center for System and Control. University of Glasgow, Glasgow, UK (1995)

    Google Scholar 

  7. Lu, B., Ito, M.: Task Decomposition and module combination based on class relations: modular neural network for pattern classification. Technical Report, Nagoya Japan (1998)

    Google Scholar 

  8. Murray-Smith, R., Johansen, T.A.: Multiple Model Approaches to Modeling and Control. Taylor & Francis, Abington (1997)

    Google Scholar 

  9. Sugeno, M.: Theory of fuzzy integrals and its application, Doctoral Thesis, Tokyo Institute of Technology (1974)

    Google Scholar 

  10. Yager, R.R.: Criteria Aggregations Functions Using Fuzzy Measures and the Choquet Integral. International Journal of Fuzzy Systems 1(2) (1999)

    Google Scholar 

  11. Quezada, A.: Reconocimiento de Huellas Digitales Utilizando Redes Neuronales Modulares y Algoritmos Geneticos. Thesis of Computer Science, Tijuana Institute of Technology (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Eduardo Gomez Ramírez Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melin, P., Carranza, M., Salazar, P., Nuñez, R. (2007). Pattern Recognition Using Modular Neural Networks and Fuzzy Integral as Method for Response Integration. In: Melin, P., Castillo, O., Ramírez, E.G., Kacprzyk, J., Pedrycz, W. (eds) Analysis and Design of Intelligent Systems using Soft Computing Techniques. Advances in Soft Computing, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72432-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72432-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72431-5

  • Online ISBN: 978-3-540-72432-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics