Abstract
The Particle Swarm Optimization (PSO) and the Genetic Algorithms (GA) have been used successfully in solving problems of optimization with continuous and combinatorial search spaces. In this paper the results of the application of PSO and GAs for the optimization of mathematical functions is presented. These two methodologies have been implemented with the goal of making a comparison of their performance in solving complex optimization problems. This paper describes a comparison between a GA and PSO for the optimization of a complex mathematical function.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Man, K.F., Tang, K.S., Kwong, S.: Genetic Algorithms: Concepts and Designs. Springer, Heidelberg (1999)
Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, pp. 39–43 (1995)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE Computer Society Press, Piscataway (1995)
Matlab Toolbox. http://www.mathworworks.com
Germundsson, R.: Mathematica Version 4. Mathematica J. 7, 497–524 (2000)
Fogel, D.B.: An introduction to simulated evolutionary optimization’. IEEE transactions on neural networks 5(1) (1994)
Holland, J.H.: Adaptation in natural and artificial system. The University of Michigan Press, Ann Arbor (1975)
Goldberg, D.: Genetic Algorithms. Addison-Wesley, Reading (1988)
Emmeche, C.: Garden in the Machine. The Emerging Science of Artificial Life, p. 114. Princeton University Press, Princeton (1994)
Angeline, P.J.: Using Selection to Improve Particle Swarm Optimization. In: Proceedings 1998 IEEE World Congress on Computational Intelligence, Anchorage, Alaska, pp. 84–89. IEEE Computer Society Press, Los Alamitos (1998)
Angeline, P.J.: _Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences. In: Porto, V.W., Waagen, D. (eds.) Evolutionary Programming VII. LNCS, vol. 1447, pp. 601–610. Springer, Heidelberg (1998)
Back, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Oxford University Press, Oxford (1997)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Valdez, F., Melin, P., Castillo, O. (2007). Evolutionary Computing for the Optimization of Mathematical Functions. In: Melin, P., Castillo, O., Ramírez, E.G., Kacprzyk, J., Pedrycz, W. (eds) Analysis and Design of Intelligent Systems using Soft Computing Techniques. Advances in Soft Computing, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72432-2_47
Download citation
DOI: https://doi.org/10.1007/978-3-540-72432-2_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72431-5
Online ISBN: 978-3-540-72432-2
eBook Packages: EngineeringEngineering (R0)