Abstract
A novel structure of type 2 fuzzy logic controller is presented. The method is highly efficient regarding computational time and implementation effort. Type-2 input membership functions were optimized using the Human Evolutionary Model (HEM) considering as the objective function the Integral of Squared Error at the controllers output. Statistical tests were achieved considering how the error at the controller’s output is diminished in presence of uncertainty, demonstrating that the proposed method outperforms an optimized traditional type-2 fuzzy controller for the same test conditions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Astudillo, L., Castillo, O., Aguilar, L.T.: Intelligent Control of an Autonomous Mobile Robot Using Type-2 Fuzzy Logic. In: Proc. Conference on Artificial Intelligence, ICAI’06, Las Vegas NV, pp. 565–570 (2006)
Castillo, O., Melin, P.: Soft Computing for Control of Non-linear Dynamical Systems. Springer, Heidelberg (2001)
Castillo, O., Melin, P.: A New Approach for Plant Monitoring using Type-2 Fuzzy Logic and Fractal Theory. International J. of General Systems 33(2), 305–319 (2004)
Hagras, H.A.: Hierarchical Type-2 Fuzzy Logic Control Architecture for Autonomous Mobile Robots. IEEE Transactions on Fuzzy Systems 12(4), 524–539 (2004)
Hongwei, W., Mendel, J.M.: Introduction to Uncertainty bounds and Their Use in the Design of Interval Type-2 Fuzzy Logic Systems. In: Proc. FUZZ-IEEE 2001, Melbourne, Australia, pp. 662–665. IEEE Computer Society Press, Los Alamitos (2001)
Karnik, N.N., Mendel, J.M.: Applications of Type-2 Fuzzy Logic Systems to Forecasting of Time-series. Information Sciences 120(1-4), 89–111 (1999)
Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 Fuzzy Logic Systems. IEEE Transactions on Fuzzy Systems 7(6), 643–658 (1999)
Lee, C.-H., et al.: Type-2 Fuzzy Neural Network Systems and Learning. International Journal of Computational Cognition 1(4), 79–90 (2003)
Melin, P., Castillo, O.: A new method for adaptive model-based control of non-linear dynamic plants using type-2 fuzzy logic and neural networks. In: Proc. 12th IEEE International conference on Fuzzy Systems, St. Louis, Missouri, pp. 420–425. IEEE, Los Alamitos (2003)
Melin, P., Castillo, O.: A New Method for Adaptive Control of Non-Linear Plants using Type-2 Fuzzy Logic and Neural Networks. International J. of General Systems 33(2), 289–304 (2004)
Mendel, J.M.: Type-2 fuzzy logic systems: Type-reduction. In: IEEE Syst., Man, Cybern. Conf., San Diego, CA, pp. 2046–2051. IEEE, Los Alamitos (1998)
Mendel, J.M.: Uncertainty, fuzzy logic, and signal processing. Signal Processing Journal 80, 913–933 (2000)
Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and new directions. Prentice Hall, Englewood Cliffs (2001)
Mendel, J.M.: Computing Derivatives in Interval Type-2 Fuzzy Logic Systems. IEEE Transactions on Fuzzy Systems 12, 84–98 (2004)
Mendel, J.M., John, R.I.B.: Type-2 Fuzzy Sets Made Simple. IEEE Transactions on Fuzzy Systems 10(2), 117–127 (2002)
Montiel, O., et al.: The Human Evolutionary Model. Journal of Intelligent System. Special Issue: Hybrid Intelligent Systems For Time Series Prediction 14(2-3), 213–236 (2005)
Ozen, T., Garibaldi, J.M.: Investigating Adaptation in Type-2 Fuzzy Logic Systems Applied to Umbilical Acid-Base Assessment. In: Proc. European Symposium on Intelligent Technologies, Hybrid Systems and their implementation on Smart Adaptive Systems, EUNITE 2003, Oulu, Finland (2003)
Proakis, J.G., Manolakis, D.G.: Digital Signal Processing principles, 3rd edn. Prentice Hall, Englewood Cliffs (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Sepúlveda, R., Castillo, O., Melin, P., Montiel, O. (2007). An Efficient Computational Method to Implement Type-2 Fuzzy Logic in Control Applications. In: Melin, P., Castillo, O., Ramírez, E.G., Kacprzyk, J., Pedrycz, W. (eds) Analysis and Design of Intelligent Systems using Soft Computing Techniques. Advances in Soft Computing, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72432-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-72432-2_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72431-5
Online ISBN: 978-3-540-72432-2
eBook Packages: EngineeringEngineering (R0)