Skip to main content

Process Monitoring Using Residuals and Fuzzy Classification with Learning Capabilities

  • Chapter
Theoretical Advances and Applications of Fuzzy Logic and Soft Computing

Part of the book series: Advances in Soft Computing ((AINSC,volume 42))

Abstract

This paper presents a monitoring methodology to identify complex systems faults. This methodology combines the production of meaningful error signals (residuals) obtained by comparison between the model outputs and the system outputs, with a posterior fuzzy classification. In a first off-line phase (learning) the classification method characterises each fault. In the recognition phase, the classification method identifies the faults. The chose classification method permits to characterize faults non included in the learning data. This monitoring process avoids the problem of defining thresholds for faults isolation. The residuals analysis and not the system variables themselves, permit us to separate fault recognition from system operation point influence. The paper describes the proposed methodology using a benchmark of a two interconnected tanks system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Venkatasubramanian, V., et al.: A Review of Process Fault Detection and Diagnosis Part I. Computers and Chemical Engineering 27 (2003)

    Google Scholar 

  2. Frank, P.M.: Fault Diagnosis in Dynamic Systems Using Analytical and Knowledge-Based Redundancy- A Survey and Some New Results. Automatica 26, 459–474 (1990)

    Article  MATH  Google Scholar 

  3. Basseville, M., Benveniste, A.: Detection of Abrupt Changes in Signals and Dynamic Systems. Lecture Notes in Control and Information Sciences, vol. 77. Springer, Heidelberg (1986)

    Google Scholar 

  4. Young, P.: Parameter Estimation for Continuous Time Models a Survey. Automatica 17(1), 23–39 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Desai, M., Ray, A.: A Fault Detection and Isolation Methodology-Theory and Application. In: Proceedings of American Control Conference, San Diego, pp. 262–270 (1984)

    Google Scholar 

  6. Yin, K.: Minimax Methods for Fault Isolation in the Directional Residual Approach. Chemical Engineering Science 53, 2921–2931 (1998)

    Article  Google Scholar 

  7. Gertler, J., Singer, D.: A New Structural Framework for Parity Equation-Based Failure Detection and Isolation. Automatica 26, 381–388 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Aguilar-Martin, J., Lopez de Mantaras, R.: The Process of Classification and Learning the Meaning of Linguistic Descriptors of Concepts. In: Approximate Reasoning in Decision Analysis, pp. 165–175. North-Holland, Amsterdam (1982)

    Google Scholar 

  9. Ould Boumama, B., et al.: Diagnosis of a Two Tank System, CHEM FDI Benchmark, CNRS, France

    Google Scholar 

  10. Babuska, R.: Fuzzy Modeling for Control, Control Engineering Technology and Systems. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  11. Takagi, T., Sugeno, M.: Fuzzy Identification of Systems and its Applications to Modeling and Control. IEEE Transactions on Systems, Man and Cybernetics 15, 116–132 (1985)

    MATH  Google Scholar 

  12. Piera, N., Aguilar-Martin, J.: Controlling Selectivity in Non-standard Pattern Recognition Algorithms. IEEE Transactions on Systems, Man, and Cybernetics 21(1) (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Oscar Castillo Patricia Melin Oscar Montiel Ross Roberto Sepúlveda Cruz Witold Pedrycz Janusz Kacprzyk

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aguilar-Martin, J., Isaza, C., Diez-Lledo, E., LeLann, M.V., Vilanova, J.W. (2007). Process Monitoring Using Residuals and Fuzzy Classification with Learning Capabilities. In: Castillo, O., Melin, P., Ross, O.M., Sepúlveda Cruz, R., Pedrycz, W., Kacprzyk, J. (eds) Theoretical Advances and Applications of Fuzzy Logic and Soft Computing. Advances in Soft Computing, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72434-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72434-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72433-9

  • Online ISBN: 978-3-540-72434-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics