Skip to main content

Satisfiability in a Linguistic-Valued Logic and Its Quasi-horn Clause Inference Framework

  • Chapter
Theoretical Advances and Applications of Fuzzy Logic and Soft Computing

Part of the book series: Advances in Soft Computing ((AINSC,volume 42))

  • 1304 Accesses

Abstract

In this paper, we focus on the linguistic-valued logic system with truth-values in the lattice-ordered linguistic truth-valued algebra, then investigate its satisfiability problem and its corresponding Quasi-Horn-clause logic framework, while their soundness and completeness theorems are provided. The present framework reflects the symbolic approach acts by direct reasoning on linguistic truth values, i.e., reasoning with words, and provides a theoretical support for natural-language based reasoning and decision making system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Robinson, J.P.: A machine-oriented logic based on the resolution principle. J. of A.C.M. 12, 23–41 (1965)

    MATH  Google Scholar 

  2. Lee, R.C.T.: Fuzzy logic and the resolution principle. Journal of A.C.M. 19, 109–119 (1972)

    MATH  Google Scholar 

  3. Liu, X.H., Xiao, H.: Operator fuzzy logic and fuzzy resolution. In: Proc. of the 5th IEEE Inter. Symp. on Multiple-Valued Logic (ISMVL´85), Kingstion, Canada, pp. 68–75. IEEE, Los Alamitos (1985)

    Google Scholar 

  4. Mukaidono, M.: Fuzzy inference of resolution style. In: Yager, R.R. (ed.) Fuzzy Sets and Possibility Theory, pp. 224–231. Pergamon Press, New York (1982)

    Google Scholar 

  5. Dubois, D., Prade, H.: Resolution principle in possibilistic logic. Int. J. of Approximate Reasoning 4(1), 1–21 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Weigert, T.J., Tsai, J.P., Liu, X.H.: Fuzzy operator logic and fuzzy resolution. Journal of Automated Reasoning 10(1), 59–78 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kim, C.S., Kim, D.S., Park, J.S.: A new fuzzy resolution principle based on the antonym. Fuzzy Sets and Systems 113(2), 299–307 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Morgan, C.G.: Resolution for many-valued logics. Logique et Analyses 19(74-76), 311–339 (1976)

    Google Scholar 

  9. Orlowska, E.: Mechanical proof methods for Post logics. Logique et Analyse 28(110), 173–192 (1985)

    MathSciNet  Google Scholar 

  10. Schmitt, P.H.: Computational aspects of three-valued logic. In: Siekmann, J.H. (ed.) 8th International Conference on Automated Deduction. LNCS, vol. 230, pp. 190–198. Springer, Heidelberg (1986)

    Google Scholar 

  11. Hahnle, R.: Automated Deduction in Multiple-Valued Logics. Oxford University Press, Oxford (1993)

    Google Scholar 

  12. Blair, H.A., Subrahamnian, V.S.: Paraconsistent logic programming. Theoretical Computer Science 68, 135–154 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kifer, M., Subrahamnian, V.S.: Theory of generalized annotated logic programming and its application. Journal of Logic Programming 12, 335–367 (1992)

    Article  MathSciNet  Google Scholar 

  14. Lu, J.J., Henschen, L.J.: The completeness of gp-resolution for annotated logic. Inform. Process. Lett. 44, 135–140 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Baaz, M., Fermuller, C.G.: Resolution for many valued logics. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 107–118. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  16. Stachniak, Z.: Resolution Proof Systems: An Algebraic Theory. Kluwer Academic Publishers, Dordrecht (1996)

    MATH  Google Scholar 

  17. Lehmke, S.: A resolution-based axiomatisation of ‘bold’ propositional fuzzy logic. In: Dubois, D., Klement, E.P., Prade, H. (eds.) Fuzzy Sets, Logics, and Reasoning about Knowledge, Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  18. Sofronie-Stokkermans, V.: Chaining techniques for automated theorem proving in finitely-valued logics. In: Proc. of the 2000 ISMVL, Portland, Oregon, pp. 337–344 (2000)

    Google Scholar 

  19. Xu, Y., et al.: α-resolution principle based on lattice-valued propositional logic LP(X). Information Sciences 130, 195–223 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Xu, Y., et al.: α-Resolution principle based on first-order lattice-valued logic LF(X). Information Sciences 132, 221–239 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu, J., et al.: A resolution-like strategy based on a lattice-valued logic. IEEE Transactions on Fuzzy Systems 11(4), 560–567 (2003)

    Article  Google Scholar 

  22. Goguen, J.A.: The logic of inexact concepts. Synthese 19, 325–373 (1969)

    Article  MATH  Google Scholar 

  23. Pavelka, J.: On fuzzy logic I: Many-valued rules of inference, II: Enriched residuated lattices and semantics of propositional calculi, III: Semantical completeness of some many-valued propositional calculi. Zeitschr. F. Math. Logik und Grundlagend. Math., 25: 45-52, 119-134, 447-464 (1979)

    Google Scholar 

  24. Novak, V.: First-order fuzzy logic. Studia Logica 46(1), 87–109 (1982)

    Article  MathSciNet  Google Scholar 

  25. Xu, Y., et al.: Lattice-Valued Logic: An Alternative Approach to Treat Fuzziness and Incomparability. Springer, Heidelberg (July 2003)

    MATH  Google Scholar 

  26. Xu, Y.: Lattice implication algebras (in Chinese). J. of Southwest Jiaotong Univ. 89(1), 20–27 (1993)

    Google Scholar 

  27. Ho, N.C., Wechler, W.: Hedge algebras: an algebraic approach to structure of sets of linguistic truth values. Fuzzy Sets and Systems 35, 281–293 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Herrera, F., Martínez, L.: A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Systems 8(6), 746–752 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Oscar Castillo Patricia Melin Oscar Montiel Ross Roberto Sepúlveda Cruz Witold Pedrycz Janusz Kacprzyk

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, J., Martinez, L., Xu, Y., Lu, Z. (2007). Satisfiability in a Linguistic-Valued Logic and Its Quasi-horn Clause Inference Framework. In: Castillo, O., Melin, P., Ross, O.M., Sepúlveda Cruz, R., Pedrycz, W., Kacprzyk, J. (eds) Theoretical Advances and Applications of Fuzzy Logic and Soft Computing. Advances in Soft Computing, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72434-6_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72434-6_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72433-9

  • Online ISBN: 978-3-540-72434-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics