Abstract
A novel unsupervised multi-spectral multiple-segmenter texture segmentation method with unknown number of classes is presented. The unsupervised segmenter is based on a combination of several unsupervised segmentation results, each in different resolution, using the sum rule. Multi-spectral texture mosaics are locally represented by four causal multi-spectral random field models recursively evaluated for each pixel. The single-resolution segmentation part of the algorithm is based on the underlying Gaussian mixture model and starts with an over segmented initial estimation which is adaptively modified until the optimal number of homogeneous texture segments is reached.
The performance of the presented method is extensively tested on the Prague segmentation benchmark using the commonest segmentation criteria and compares favourably with several alternative texture segmentation methods.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Reed, T.R., du Buf, J.M.H.: A review of recent texture segmentation and feature extraction techniques. CVGIP–Image Understanding 57, 359–372 (1993)
Kashyap, R.: Image models. In: Young, T.Y., Fu, K.-S. (eds.) Handbook of Pattern Recognition and Image Processing, Academic Press, New York (1986)
Haindl, M.: Texture synthesis. CWI Quarterly 4, 305–331 (1991)
Panjwani, D., Healey, G.: Markov random field models for unsupervised segmentation of textured color images. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 939–954 (1995)
Manjunath, B., Chellapa, R.: Unsupervised texture segmentation using markov random field models. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 478–482 (1991)
Andrey, P., Tarroux, P.: Unsupervised segmentation of markov random field modeled textured images using selectionist relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 252–262 (1998)
Haindl, M.: Texture segmentation using recursive markov random field parameter estimation. In: Bjarne, K., Peter, J. (eds.) Proceedings of the 11th Scandinavian Conference on Image Analysis, pp. 771–776. Pattern Recognition Society of Denmark, Lyngby, Denmark (1999)
Haindl, M., Mikeš, S.: Model-Based Texture Segmentation. In: Campilho, A.C., Kamel, M. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 306–313. Springer, Heidelberg (2004)
Haindl, M., Mikeš, S.: Unsupervised texture segmentation using multispectral modelling approach. In: Tang, Y., et al. (eds.) Proceedings of the 18th International Conference on Pattern Recognition, ICPR 2006, vol. II, pp. 203–206. IEEE Computer Society Press, Los Alamitos (2006)
Kittler, J., Hojjatoleslami, A., Windeatt, T.: Weighting factors in multiple expert fusion. In: Proc. BMVC, BMVA, BMVA, pp. 41–50 (1997)
Rahman, A., Fairhust, M.: Multiple classifier decision combination strategies for character recognition: A review. Int. Journal on Document Analysis and Recognition, 166–194 (2003)
Haindl, M., Šimberová, S.: A Multispectral Image Line Reconstruction Method. In: Theory & Applications of Image Analysis, pp. 306–315. World Scientific Publishing, Singapore (1992)
Mikeš, S., Haindl, M.: Prague texture segmentation data generator and benchmark. ERCIM News, 67–68 (2006)
Hoover, A., et al.: An experimental comparison of range image segmentation algorithms. IEEE Transaction on Pattern Analysis and Machine Intelligence 18, 673–689 (1996)
Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image bounderies using brightness and texture. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1–19 (2004)
Martin, D., et al.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th Int. Conf. Computer Vision, vol. 2, pp. 416–423 (2001)
Hellerstein, J.M., et al.: Blobworld: A System for Region-Based Image Indexing and Retrieval. In: Huijsmans, D.P., Smeulders, A.W.M. (eds.) VISUAL 1999. LNCS, vol. 1614, pp. 509–517. Springer, Heidelberg (1999)
Deng, Y., Manjunath, B.: Unsupervised segmentation of color-texture regions in images and video. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 800–810 (2001)
Christoudias, C., Georgescu, B., Meer, P.: Synergism in low level vision. In: Kasturi, R., Laurendeau, D., Suen, C. (eds.) Proceedings of the 16th International Conference on Pattern Recognition, vol. 4, pp. 150–155. IEEE Computer Society Press, Los Alamitos (2002)
Scarpa, G., Haindl, M.: Unsupervised texture segmentation by spectral-spatial-independent clustering. In: Tang, Y., et al. (eds.) Proceedings of the 18th International Conference on Pattern Recognition, ICPR 2006, vol. II, pp. 151–154. IEEE Computer Society Press, Los Alamitos (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Haindl, M., Mikeš, S. (2007). Unsupervised Texture Segmentation Using Multiple Segmenters Strategy. In: Haindl, M., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2007. Lecture Notes in Computer Science, vol 4472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72523-7_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-72523-7_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72481-0
Online ISBN: 978-3-540-72523-7
eBook Packages: Computer ScienceComputer Science (R0)