Skip to main content

Index Driven Combination of Multiple Biometric Experts for AUC Maximisation

  • Conference paper
Multiple Classifier Systems (MCS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4472))

Included in the following conference series:

  • 1286 Accesses

Abstract

A biometric system produces a matching score representing the degree of similarity of the input with the set of templates for that user. If the score is greater than a prefixed threshold, then the user is accepted, otherwise the user is rejected. Typically, the performance is evaluated in terms of the Receiver Operating Characteristic (ROC) curve, where the correct acceptance rate is plotted against the false authentication rate. A measure used to characterise a ROC curve is the Area Under the Curve (AUC), the larger the AUC, the better the ROC. In order to increase the reliability of authentication through biometrics, the combination of different biometric systems is currently investigated by researchers. In this paper two open problems are addressed: the selection of the experts to be combined and their related performance improvements. To this end we propose an index to be used for the experts selection to be combined, with the aim of the AUC maximisation. Reported results on FVC2004 dataset show the effectiveness of the proposed index.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, Chichester (2004)

    MATH  Google Scholar 

  2. Hong, L., Jain, A.K., Pankanti, S.: Can Multibiometrics Improve Performance? In: AutoID’99, pp. 59–64 (1999)

    Google Scholar 

  3. Ross, A., Nandakumar, K., Jain, A.: Handbook of Multibiometrics. Springer, Heidelberg (2006)

    Google Scholar 

  4. Huang, J., Ling, C.X.: Using AUC and Accuracy in Evaluating Learning Algorithms. IEEE Transactions on Knowledge and Data Engineering 17, 299–310 (2005)

    Article  Google Scholar 

  5. Mann, H.B., Whitney, D.R.: On a test whether one or two random variable is stochastically larger than the other. Ann. Math. Statistic 18, 50–60 (1947)

    Article  MathSciNet  Google Scholar 

  6. Hanley, J.A., McNeil, B.J.: The meaning and the use of the area under a receiver operanting charateristic curve. Radiology 143, 29–36 (1982)

    Google Scholar 

  7. C., M., M., M., F., T.: Exploiting AUC for optimal linear combinations of dichotomizers. Pattern Recognition Letters 27(8), 900–907 (2006)

    Article  Google Scholar 

  8. Roli, F., Giacinto, G., Tronci, R.: Score Selection Techniques for Fingerprint Multi-modal Biometric Authentication. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 1018–1025. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Jain, A.K., et al.: FVC2004: Third Fingerprint Verification Competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 1–7. Springer, Heidelberg (2004)

    Google Scholar 

  10. FVC2004 Website: http://bias.csr.unibo.it/fvc2004/

  11. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michal Haindl Josef Kittler Fabio Roli

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Tronci, R., Giacinto, G., Roli, F. (2007). Index Driven Combination of Multiple Biometric Experts for AUC Maximisation. In: Haindl, M., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2007. Lecture Notes in Computer Science, vol 4472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72523-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72523-7_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72481-0

  • Online ISBN: 978-3-540-72523-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics