Skip to main content

Robust Inference in Bayesian Networks with Application to Gene Expression Temporal Data

  • Conference paper
Multiple Classifier Systems (MCS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4472))

Included in the following conference series:

Abstract

We are concerned with the problem of inferring genetic regulatory networks from a collection of temporal observations. This is often done via estimating a Dynamic Bayesian Network (DBN) from time series of gene expression data. However, when applying this algorithm to the limited quantities of experimental data that nowadays technologies can provide, its estimation is not robust. We introduce a weak learners’ methodology for this inference problem, study few methods to produce Weak Dynamic Bayesian Networks (WDBNs), and demonstrate its advantages on simulated gene expression data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  2. Murphy, K., Mian, S.: Modelling Gene Expression Data using Dynamic Bayesian Networks. Technical Report, MIT Artificial Intelligence Laboratory (1999)

    Google Scholar 

  3. Friedman, N., et al.: Using Bayesian Networks to Analyze Expression Data. Journal of Computational Biology (2000)

    Google Scholar 

  4. Hartemink, A.J., et al.: Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. In: Pacific Symp. Biocomput., pp. 422–433 (2001)

    Google Scholar 

  5. Hartemink, A., et al.: Combining location and expression data for principled discovery of genetic regulatory network models. In: Pac. Symp. Biocomput., vol. 7, pp. 437–449 (2002)

    Google Scholar 

  6. Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19, 2271–2282 (2003)

    Article  Google Scholar 

  7. Smith, V.A., Jarvis, E.D., Hartemink, A.J.: Influence of Network Topology and Data Collection on Network Infernece. In: Pacific Symp. Biocomput., vol. 8, pp. 164–175 (2003)

    Google Scholar 

  8. Smith, V.A., Jarvis, E.D., Hartemink, A.J.: Evaluating functional network inference using simulations. Bioinformatics 18, S216–S224 (2002)

    Google Scholar 

  9. Yu, J., et al.: Using Bayesian Network Inference Algorithms to Recover Molecular Genetic Regulatory Networks. In: 3rd International Conference on System Biology, Karolinska Institute, Stockholm, Sweden (2002)

    Google Scholar 

  10. Jacobs, R.A., et al.: Adaptive Mixtures of Local Experts. Neural Computation 3, 79–87 (1991)

    Article  Google Scholar 

  11. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 993–1001 (1990)

    Article  Google Scholar 

  12. Tumer, K., Ghosh, J.: Error Correlation and Error Reduction in Ensemble Classifiers. Connection Science 8, 385–404 (1996)

    Article  Google Scholar 

  13. Sharkey, A.J.C.: On Combining Artificial Neural Nets. Connection Science 8 (1996)

    Google Scholar 

  14. Raviv, Y., Intrator, N.: Bootstrapping with Noise: An Effective Regularization Technique. Connection Science 8, 355–372 (1996)

    Article  Google Scholar 

  15. Pe’er, D., et al.: Inferring subnetworks from perturbed expression profiles. Bioinformatics 17(Suppl. 1), S215–S224 (2001)

    Google Scholar 

  16. Hartemink, A.J., et al.: Combining location and expression data for principled discovery of genetic regulatory network models. In: Pacific Symp. Biocomput., vol. 7, pp. 437–449 (2002)

    Google Scholar 

  17. Friedman, N., Koller, D.: Being Bayesian about Network Structure. A Bayesian Approach to Structure Discovery in Bayesian Networks. Machine Learning 50(1), 95–125 (2003)

    Article  MATH  Google Scholar 

  18. Yu, J., et al.: Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatic 20(18), 3594–3603 (2004)

    Article  Google Scholar 

  19. Basso, K., et al.: Reverse engineering of regulatory networks in human B cells. Nat Genet (2005)

    Google Scholar 

  20. Hartemink, A.J.: Reverse engineering gene regulatory networks. Nat. Biotechnol. 23(5), 554–555 (2005)

    Article  Google Scholar 

  21. Hartemink, A.J.: BANJO (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michal Haindl Josef Kittler Fabio Roli

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Berkman, O., Intrator, N. (2007). Robust Inference in Bayesian Networks with Application to Gene Expression Temporal Data. In: Haindl, M., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2007. Lecture Notes in Computer Science, vol 4472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72523-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72523-7_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72481-0

  • Online ISBN: 978-3-540-72523-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics